Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{6+7+9}{2}=11\left(cm\right)\)
\(S=\sqrt{11\cdot5\cdot4\cdot2}=2\sqrt{110}\left(cm^2\right)\)
TA DỰNG NHƯ HÌNH VẼ
ĐẶT S ORQ = n^2 , S OMP = n^2+1 , S OSN = n^2+3
DỄ DÀNG NHẬN THẤY:
TAM GIÁC ORQ ĐỒNG DẠNG VỚI TAM GIÁC PMO
=> \(\frac{OQ}{OP}=\frac{\pi}{\sqrt{\pi^2+1}}\)
=> \(\frac{OQ}{PQ}=\frac{\pi}{\sqrt{\pi^2+1}+\pi}\)
=> S ORQ = \(\frac{\pi^2}{\left(\sqrt{\pi^2+1}+\pi\right)^2}SPQB\)
=> S PQB = \(\left(\sqrt[]{\pi^2+1}+\pi\right)^2\)
CHỨNG MINH TƯƠNG TỰ VỚI SAMN VÀ S SRC RỒI CỘNG LẠI TRỪ ĐI 2 LẦN TỔNG CỦA 3 TAM GIÁC TRONG ĐỀ BÀI LÀ RA DIỆN TÍCH TAM GIÁC ABC
Kẻ AH\(\perp BC\) cắt MN ở E
Xét tam giác ABC có MN là đường trung bình nên MN= 1/2 BC. AH là đường cao tại đỉnh A xuống BC cắt đường trung bình MN ở E nê AE=1/2 AH
Có Samn= AE.MN.1/2=1/2 AH.1/2 BC. 1/2= (1/2 AH.BC). 1/4=480.1/4=120(cm2)
Toán 8 cx lm đc chứ ko phải toán 9 đâu Diễm ạ dùng đường trung bình lớp 8 dễ hơn nhiều mà chắc gợi ý cx( cũng) sai
Nửa chu vi là
\(\dfrac{AB+BC+AC}{2}=\dfrac{\sqrt{13}+3\sqrt{3}}{2}\)
Diện tích tam giác ABC là \(S=\sqrt{\dfrac{\sqrt{13}+3\sqrt{3}}{2}\left(\dfrac{\sqrt{13}+3\sqrt{3}}{2}-\dfrac{\sqrt{13}}{4}\right)\left(\dfrac{\sqrt{13}+3\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}\right)\left(\dfrac{\sqrt{13}+3\sqrt{3}}{2}-\dfrac{\sqrt{3}}{4}\right)}\)
b: Ta có: BC=BH+HC
nên BC=4+9
hay BC=13cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)
\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)
\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)
\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)