K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

\(\dfrac{3\sqrt{2}}{2}dm^2\)

22 tháng 1 2022

Bạn có thể giải thích ra dùm mình được không?

9 tháng 12 2018

A B C D M N O

9 tháng 12 2018

a)  Xét tam giác vuông AMD và tam giác vuông CBN ta có :

\(\widehat{AMD}=\widehat{CNB}=90^o\) ( GT )

\(AD=CB\)( Vì ABCD là hình bình hành )

\(\widehat{ADM}=\widehat{CBN}=60^o\) ( góc đối của hình bình hành ABCD )

Do đó : \(\Delta AMD=\Delta CBN\)( cạnh huyền - góc nhọn )

\(\Rightarrow\hept{\begin{cases}AM=CN\\DM=NB\end{cases}}\)( các cặp cạnh tương ứng )

\(\Rightarrow\hept{\begin{cases}AM=CN\\AN=CM\end{cases}}\)   ( vì AB=CD )

=> ANCM là hình bình hành 

Xét hình bình hành ANCM ta có :

góc AMC=90 độ 

=> AMCN là hình chữ nhật   .  ( dấu hiệu nhận biết 3 )

b) Ta có  O là điểm giao hai đường chéo AC và BD của hình bình hành ABCD .

=> O là trung điểm của AC và BD . (1)

Và ANCM là hình bình hành ( câu a )

=> O là giao điểm của hai đường chéo AC và MN 

=> O cũng là trung điểm của MN   (2)

Từ (1) và (2)

=> AC , BD và MN đồng quy tại điểm O  ( đpcm)

18 tháng 12 2014

Dễ thấy SABCD = 2SADC (1)

Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.

Tam giác ADC và tam giác CMD có chung đường cao kẻ từ C nên cho ta :\(\frac{S_{ADC}}{S_{CMD}}=\frac{AD}{MD}=2\)hay SADC = 2SCMD (2)

Tương tự : \(\frac{S_{CMD}}{S_{DME}}=\frac{CM}{ME}=3\)( vì E là trọng tâm của tam giác ADC ) hay SCMD = 3SDME (3)

Từ (1) (2) (3) suy ra SABCD = 12SDME = 12 m2

6 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [A, D] ?o?n th?ng j: ?o?n th?ng [B, C] ?o?n th?ng k: ?o?n th?ng [A, C] ?o?n th?ng l: ?o?n th?ng [N, M] ?o?n th?ng m: ?o?n th?ng [N, C] ?o?n th?ng n: ?o?n th?ng [D, M] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [N, B] A = (-0.8, 5.28) A = (-0.8, 5.28) A = (-0.8, 5.28) B = (2.92, 5.32) B = (2.92, 5.32) B = (2.92, 5.32) D = (-4.48, -0.26) D = (-4.48, -0.26) D = (-4.48, -0.26) C = (-0.76, -0.22) C = (-0.76, -0.22) C = (-0.76, -0.22) ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q

Cô hướng dẫn thôi nhé :)

a. AMCN là hình thoi vì có AN//CM; AN = CM và \(AC\perp MN\) 

b. Ta có góc DCB = 120 nên DNMC là hình thoi hay NM = MC = MB. Vậy tam giác NCB vuông tại N.

c. QNPM là hình chữ nhật : NP//QM, NQ//PM, NQ vuông góc PM.

Thấy ngay \(\frac{S_{NQM}}{S_{NMCD}}=\frac{S_{NMP}}{S_{ABMN}}=\frac{1}{4}\Rightarrow\frac{S_{NPMQ}}{S_{ABCD}}=\frac{1}{4}\)

d. Ta tính được DC , từ đó suy ra \(NC=DC\)

\(NB=2DQ=2\sqrt{DC^2-QC^2}\)