\(\dfrac{7}{4}.(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

\(\dfrac{7}{4}.\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)

\(=\dfrac{7}{4}.\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}.33\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=\dfrac{7}{4}.33\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\right)\)

\(=\dfrac{7}{4}.33\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=\dfrac{7}{4}.33\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(=\dfrac{7}{4}.33\left(\dfrac{7}{21}-\dfrac{3}{21}\right)\)

\(=\dfrac{7}{4}.33.\dfrac{4}{21}\)

\(=\dfrac{231}{4}.\dfrac{4}{21}\)

\(=\dfrac{231}{21}=11\)

12 tháng 1 2022

Cái ở giữa 3333/2020 và 333333/3030303 là j vậy ạ

Đề sai rồi bạn

1 tháng 10 2017

\(b,C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\\ =\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\\ =\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\\ =\dfrac{1}{3}-\dfrac{1}{33}\\ =\dfrac{11}{33}-\dfrac{1}{33}=\dfrac{10}{33}\)

1 tháng 10 2017

a.F=\(\dfrac{4}{2.4}\)+\(\dfrac{4}{4.6}\)+\(\dfrac{4}{6.8}\)+...+\(\dfrac{4}{2008.2010}\)

F=\(\dfrac{2.2}{2.4}\)+\(\dfrac{2.2}{4.6}\)+\(\dfrac{2.2}{6.8}\)+...+\(\dfrac{2.2}{2008.2010}\)

F=2.(\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{2008.2010}\))

F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2010}\))

F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{2010}\))

F=\(\dfrac{1004}{1005}\)

3 tháng 9 2017

1, \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...........\left(1-\dfrac{1}{n+1}\right)\)

\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...........\left(\dfrac{n+1}{n+1}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}..............\dfrac{n}{n+1}\)

\(=\dfrac{1.2.3........n}{2.3.......\left(n+1\right)}\)

\(=\dfrac{1}{n+1}\)

2, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

C=\(-66\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)

=\(-66.\left(\dfrac{5}{66}\right)+124\left(-37-63\right)=-5+124.\left(-100\right)\)

=-12405

2 tháng 6 2017

\(P=-\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

\(P=-\frac{7}{4}.\left(\frac{33}{12}+\frac{33.101}{20.101}+\frac{33x10101}{30x10101}+\frac{33x1010101}{42x1010101}\right)\)

\(P=-\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(P=-\frac{7}{4}.\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)

\(P=-\frac{77}{8}.\left(\frac{1}{6}+\frac{3}{10}+\frac{1}{15}+\frac{1}{21}\right)=-\frac{77}{8}.\frac{35+63+14+10}{210}=-\frac{11x122}{8x30}\)

\(P=-\frac{671}{120}\)

2 tháng 6 2017

P = -7/4 x (33/12 + 3333/2020 + 333333/303030 + 33333333/42424242)
   = -7/4 x (33/12 + 33/20 + 33/30 + 33/42)
   = -7/4 x [33 x (1/12 + 1/20 + 1/30 + 1/42)]
   = -7/4 x [33 x (35/420 + 21/420 + 14/420 + 10/420)]
   = -7/4 x (33 x 80/420)
   = -7/4 x  33 x 4/21
   = -7/4 x 4/21 x 33 (= -7x4 / 4x21   x33)
   = -7/21 x 33 (= -7x33 / 21 = -1x7x3x11 / 3x7)
   = -11/1
   = -11
Đáp số P = -11

Các số gạch đi là do rút gọn phân số nhé!!!

17 tháng 8 2018

\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{3333\div101}{2020\div101}+\frac{333333\div10101}{303030\div10101}+\frac{33333333\div1010101}{42424242\div1010101}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)

= 7/4 . 44/7

= 11

17 tháng 8 2018

\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33.101}{20.101}+\frac{33.10101}{30.10101}+\frac{33.1010101}{42.1010101}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(=\frac{7}{4}.33.\frac{4}{21}\)

\(=11\)

Tham khảo nhé~

1: \(=\dfrac{-8}{11}\left(\dfrac{3}{2}+\dfrac{33}{20}+\dfrac{11}{10}\right)\)

\(=\dfrac{-8}{11}\cdot\dfrac{30+33+22}{20}=\dfrac{-8}{11}\cdot\dfrac{85}{20}=-\dfrac{34}{11}\)

2: \(=\dfrac{2}{3}+\dfrac{1}{3}=1\)

10 tháng 11 2019

a) 74x.(3312+33332020+333333303030+3333333342424242)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=3247​x.(1233​+20203333​+303030333333​+4242424233333333​)=32

74x.(3312+3320+3330+3342)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=3247​x.(1233​+2033​+3033​+4233​)=32

74x.(333.4+334.5+335.6+336.7)=32\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=3247​x.(3.433​+4.533​+5.633​+6.733​)=32

74x.33.(13−14+14−15+15−16+16−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=3247​x.33.(31​−41​+41​−51​+51​−61​+61​−71​)=32

74x.33.(13−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=3247​x.33.(31​−71​)=32

74x.33⋅421=32\frac{7}{4}x.33\cdot\frac{4}{21}=3247​x.33⋅214​=32

10 tháng 11 2019

b) 13+16+110+115+...+2x.(x−1)=20072009\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x.\left(x-1\right)}=\frac{2007}{2009}31​+61​+101​+151​+...+x.(x−1)2​=20092007​

26+212+220+230+...+2(x−1).x=20072009\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}62​+122​+202​+302​+...+(x−1).x2​=20092007​

22.3+23.4+24.5+25.6+...+2(x−1).x=20072009\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}2.32​+3.42​+4.52​+5.62​+...+(x−1).x2​=20092007​

2.(12−13+13−14+14−15+15−16+...+1x−1−1x)=200720092.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x-1}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21​−31​+31​−41​+41​−51​+51​−61​+...+x−11​−x1​)=20092007​

2.(12−1x)=200720092.\left(\frac{1}{2}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21​−x1​)=20092007​

1−2x=200720091-\frac{2}{x}=\frac{2007}{2009}1−x2​=20092007​

2x=22009\frac{2}{x}=\frac{2}{2009}x2​=20092​

=> x = 2009

20 tháng 7 2018

A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)

= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)

= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)

= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)

= \(\dfrac{215}{1}=215\)

20 tháng 7 2018

B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)

= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)

= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)

= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)

= \(\dfrac{300}{2}=150\)

\(B=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}\left(\dfrac{11}{4}+\dfrac{33}{20}+\dfrac{11}{10}+\dfrac{11}{14}\right)\)

\(=\dfrac{7}{4}\cdot\dfrac{11\cdot35+33\cdot7+11\cdot14+11\cdot10}{140}\)

\(=\dfrac{880}{20\cdot4}=11\)

\(C=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right)\cdot\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\dfrac{-41}{21}}\)

\(=\dfrac{\dfrac{25}{108}\cdot\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{-100}{41}}\)

\(=\dfrac{\dfrac{5751+187\cdot27}{108}}{\dfrac{-100}{41}}=100\cdot\dfrac{-41}{100}=-41\)