Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,72-2,2+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{11}{4}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}\)
= \(\dfrac{3}{11}\)
b. \(\dfrac{0,357-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{0,625-0,5+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\)
= \(\dfrac{3}{5}\)
c, \(-\left|-1,5\right|.\left(1\dfrac{1}{3}-2\right)-\left|-\dfrac{2}{3}\right|\)
= \(-1,5.\left(\dfrac{4}{3}-2\right)-\dfrac{2}{3}\)
= \(-1,5.\left(\dfrac{-2}{3}\right)-\dfrac{2}{3}\)
= \(1-\dfrac{2}{3}=\dfrac{1}{3}\)
\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\right)\times\dfrac{2022}{2021}\)
\(M=\left(\dfrac{\dfrac{178}{495}}{\dfrac{623}{495}}-\dfrac{\dfrac{17}{60}}{\dfrac{119}{120}}\right)\times\dfrac{2022}{2021}\)
\(M=\left(\dfrac{2}{7}-\dfrac{2}{7}\right)\times\dfrac{2022}{2021}\)
\(M=0\times\dfrac{2022}{2021}\)
M=0
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)
\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)
\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)
=1-82/84
=2/84=1/42
\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)
\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
=\(\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right):\left(\dfrac{11}{7}+\dfrac{11}{13}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
=\(\left(3.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\right):\left(11\left(\dfrac{1}{7}+\dfrac{1}{13}+\dfrac{1}{4}-\dfrac{1}{5}\right)\right)\)
= \(\dfrac{3}{11}\)
Mình sửa số chia thành \(\left(\dfrac{11}{7}+\dfrac{11}{13}+2,75-2,2\right)\)
1, \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...........\left(1-\dfrac{1}{n+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...........\left(\dfrac{n+1}{n+1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}..............\dfrac{n}{n+1}\)
\(=\dfrac{1.2.3........n}{2.3.......\left(n+1\right)}\)
\(=\dfrac{1}{n+1}\)
2, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
C=\(-66\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)
=\(-66.\left(\dfrac{5}{66}\right)+124\left(-37-63\right)=-5+124.\left(-100\right)\)
=-12405
1: \(=\dfrac{-8}{11}\left(\dfrac{3}{2}+\dfrac{33}{20}+\dfrac{11}{10}\right)\)
\(=\dfrac{-8}{11}\cdot\dfrac{30+33+22}{20}=\dfrac{-8}{11}\cdot\dfrac{85}{20}=-\dfrac{34}{11}\)
2: \(=\dfrac{2}{3}+\dfrac{1}{3}=1\)