\(\dfrac{3}{5.7}\) + \(\dfrac{3}{7.9}\) + ........">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

\(\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+...+\dfrac{3}{59\cdot61}\)

\(=3\left(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+...+\dfrac{1}{59\cdot61}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\) \(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)

20 tháng 3 2017

A=\(\dfrac{3}{5.7}\)+\(\dfrac{3}{7.9}\)+...+\(\dfrac{3}{59.61}\)

A=\(\dfrac{3}{2}\)(\(\dfrac{2}{5.7}\)+\(\dfrac{2}{7.9}\)+...+\(\dfrac{2}{59.61}\))

A=\(\dfrac{3}{2}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{9}\)+..+\(\dfrac{1}{59}\)-\(\dfrac{1}{61}\))

A=\(\dfrac{3}{2}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{61}\))

A=\(\dfrac{3}{2}\)(\(\dfrac{61-5}{5.61}\))

A=\(\dfrac{3}{2}\).\(\dfrac{56}{305}\)

A=\(\dfrac{84}{305}\)

leuleuok

10 tháng 5 2018

A=3/4.(1/5.7+1/7.9+....+1/59.61)

A=3/4.(1/5-1/7+1/7-1/9+...+1/59-1/61)

A=3/4.(1/5-1/61)

A=3/4.56/305

A=42/305

mình làm cho bạn phần A thôi nhé còn phần B mình chưa nghĩ ra cách làm ahihi!

14 tháng 3 2017

\(T=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{59\cdot61}\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)

14 tháng 3 2017

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)

\(=3.\left(\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+...+\dfrac{1}{59.61}\right)\)

\(=3.\dfrac{1}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}.\dfrac{56}{305}\)

\(=\dfrac{84}{305}\)

13 tháng 8 2017

a) Sửa tí: \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

\(\Rightarrow2A=2.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(\Rightarrow2A-A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2006}}\)

\(\Rightarrow A=2-\dfrac{1}{2^{2006}}\)

b) Đặt \(A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{1}{50.61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{61}\)

\(A=\dfrac{56}{305}\)

c) Đặt \(A=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)

\(A=\dfrac{7}{2}.2.\left(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{9999}\right)\)

\(A=\dfrac{7}{2}.\left(1-\dfrac{1}{101}\right)\)

\(A=\dfrac{7}{2}.\dfrac{100}{101}\)

\(A=\dfrac{256}{101}\)

17 tháng 4 2017

b,=1/5-1/7+1/7-1/9+...+1/59-1/61

=1/5-1/61

=54/115

11 tháng 3 2017

Ta có :

\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)

\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{59.61}\)

\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.......+\dfrac{1}{59}-\dfrac{1}{61}\)

\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{61}\)

\(\dfrac{A}{2}=\dfrac{56}{305}\)

\(\Rightarrow A=\dfrac{112}{305}\)

Chúc bn học tốt!!

11 tháng 3 2017

\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)

\(A=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

\(A=2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(A=2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

\(A=2.\dfrac{56}{305}\)

\(A=\dfrac{112}{305}\)

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)

2 tháng 5 2017

\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)

\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{61-59}{59.61}\)

\(A=\dfrac{5}{3.5}-\dfrac{3}{3.5}+\dfrac{7}{5.7}-\dfrac{5}{5.7}+\dfrac{9}{7.9}-\dfrac{7}{7.9}+...+\dfrac{61}{59.61}-\dfrac{59}{59.61}\)

\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(A=\dfrac{1}{3}-\dfrac{1}{61}=\dfrac{61}{183}-\dfrac{3}{183}=\dfrac{58}{183}\)

2 tháng 5 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)

= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

= \(\dfrac{1}{3}-\dfrac{1}{61}\)

= \(\dfrac{58}{183}\)

25 tháng 4 2018

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)

= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

=\(\dfrac{3}{2}.\dfrac{56}{305}\)

= \(\dfrac{78}{305}\)

25 tháng 4 2018

\(\left(x^2-4\right)\left(6-2x\right)=0\)\(x^2-4=0\) hoặc \(6-2x=0\)

*Nếu \(x^2-4=0\)

⇒ x2 = 4

⇒ x ∈ {2 ; -2}

*Nếu \(6-2x=0\)

⇒2x = 6

⇒ x = 6 : 2 = 3

Vậy x ∈ { -2 ; 2 ; 3 }