Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)
\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(M=2.\dfrac{32}{99}\)
\(M=\dfrac{64}{99}\)
http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp
A=3/4.(1/5.7+1/7.9+....+1/59.61)
A=3/4.(1/5-1/7+1/7-1/9+...+1/59-1/61)
A=3/4.(1/5-1/61)
A=3/4.56/305
A=42/305
mình làm cho bạn phần A thôi nhé còn phần B mình chưa nghĩ ra cách làm ahihi!
a) Sửa tí: \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
\(\Rightarrow2A=2.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(\Rightarrow2A-A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2006}}\right)\)
\(\Rightarrow A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2006}}\)
\(\Rightarrow A=2-\dfrac{1}{2^{2006}}\)
b) Đặt \(A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{1}{50.61}\)
\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(A=\dfrac{1}{5}-\dfrac{1}{61}\)
\(A=\dfrac{56}{305}\)
c) Đặt \(A=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)
\(A=\dfrac{7}{2}.2.\left(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{9999}\right)\)
\(A=\dfrac{7}{2}.\left(1-\dfrac{1}{101}\right)\)
\(A=\dfrac{7}{2}.\dfrac{100}{101}\)
\(A=\dfrac{256}{101}\)
\(S=\dfrac{5-3}{5.3}+\dfrac{7-5}{7.5}....+\dfrac{25-23}{23.25}\)
\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{23}-\dfrac{1}{25}\)
\(S=\dfrac{1}{3}-\dfrac{1}{25}=\dfrac{25-3}{3.25}=\dfrac{7}{25}\)
a)
\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=\dfrac{1}{5}-\dfrac{1}{25}\)
\(=\dfrac{4}{25}\)
b)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)
⇒ \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)
tương tự
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}\)
Vậy \(A=\dfrac{12}{39}\)
b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=1-\dfrac{1}{76}\)
\(=\dfrac{75}{76}\)
Vậy \(B=\dfrac{75}{76}\)
a) Ta có :
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)
b) Ta có :
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)
\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)
~ Học tốt ~
Giải:
Biến đổi vế trái BĐT:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Vì \(\dfrac{32}{99}>\dfrac{32}{100}\)
\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>\dfrac{32}{100}\)
\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>32\%\)
Vậy ...
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)
tính
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)
\(=(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13})+\dfrac{2}{39}\)
\(=(\dfrac{1}{3}-\dfrac{1}{13})+\dfrac{2}{39}\)
\(=\dfrac{10}{39}+\dfrac{2}{39}\)
\(=\dfrac{4}{13}\)
gọi biểu thức đó là A
A=\(1.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)+\dfrac{2}{39}\)
A= \(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)+\dfrac{2}{39}=\dfrac{4}{13}\)
mk nhanh nhất nha bạn
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{61-59}{59.61}\)
\(A=\dfrac{5}{3.5}-\dfrac{3}{3.5}+\dfrac{7}{5.7}-\dfrac{5}{5.7}+\dfrac{9}{7.9}-\dfrac{7}{7.9}+...+\dfrac{61}{59.61}-\dfrac{59}{59.61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{61}=\dfrac{61}{183}-\dfrac{3}{183}=\dfrac{58}{183}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
= \(\dfrac{1}{3}-\dfrac{1}{61}\)
= \(\dfrac{58}{183}\)