Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^{10}.\left(13+65\right)}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.78}{2^{11}.13}\)\(=\dfrac{1.6}{2.1}=\dfrac{1.3}{1.1}=3\)
b: \(=\dfrac{2^{20}\cdot3^2+2^{54}}{2^{18}\cdot5^2}=\dfrac{2^{20}\left(3^2+2^{32}\right)}{2^{18}\cdot5^2}=\dfrac{2^2\left(3^2+2^{32}\right)}{25}\)
c: \(=\dfrac{2^9\cdot3^6\cdot3^6\cdot2^2}{2^8\cdot3^{12}}=\dfrac{2^{11}}{2^8}=8\)
d: \(=\dfrac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}=9\)
Ta có : \(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^{10}.26}=\frac{78}{26}=3\)
Ta có : \(B=\frac{4^6.9^5.6^9.120}{8^4.3^{12}+6^{11}}=\frac{4^6.9^5.120.6^9}{2^{12}.3^{12}+6^{11}}=\frac{4^6.9^5.6^9.120}{6^{12}+6^{11}}=\frac{6^9.9^5.4^6.120}{6^{11}\left(6+1\right)}\)
\(=\frac{9^5.4^6.120}{6^2.7}=\frac{\left(9.4\right)^5.480}{36.7}=\frac{36^4.480}{7}\)
( câu b đến đây hết rút được gồi / có chi sai thông cảm hen )
a. \(A=\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,75-2,2+\dfrac{11}{7}+\dfrac{11}{13}}=\dfrac{3\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
Vậy \(A=\dfrac{3}{11}\)
b. \(B=\dfrac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{2^{12}\left(13+65\right)}{2^{10}\cdot104}+\dfrac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\dfrac{2^{12}\cdot78}{2^{10}\cdot104}+\dfrac{3^{10}\cdot16}{3^9\cdot16}=\dfrac{2^2\cdot3}{1\cdot4}+3=\dfrac{12}{4}+3=3+3=6\)
Vậy \(B=6\)
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
((3\(^2\)))\(^2\) - ((-5\(^2\)))\(^2\) + ((-2\(^3\)))\(^2\)
= 81 - 625 + 64
= -544+ 64
= -480
2\(^4\) + 8[(-2)\(^2\) :\(\dfrac{1}{2}\)]\(^0\) - 2\(^{-2}\). 4 + (-2)\(^2\)
= 16+ 8.1 - \(\dfrac{1}{4}\). 4 + 4
= 16+ 8- 1+4
= 27
2\(^4\) + 3(\(\dfrac{1}{2}\))\(^0\) + 2\(^{-2}\).8 + [(-2)\(^3\). \(\dfrac{1}{2^4}\)].2 - \(\dfrac{1}{2}\)
= 16 + 3.1 +\(\dfrac{1}{4}\).8 + [(-8).\(\dfrac{1}{16}\)].2 -\(\dfrac{1}{2}\)
= 16 + 3+ 2 + \(\dfrac{-1}{2}\).2- \(\dfrac{1}{2}\)
= 21 + (-1)- \(\dfrac{1}{2}\)
= 20-\(\dfrac{1}{2}\) = \(\dfrac{40}{2}\) - \(\dfrac{1}{2}\)= \(\dfrac{39}{2}\)
\(\dfrac{15^{10}.5^{10}}{75^{10}}\) + \(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
= \(\dfrac{\left(15.5\right)^{10}}{75^{10}}\) + \(\dfrac{\left(0,4.2\right)^5}{\left(0.4\right)^6}\)
= \(\dfrac{75^{10}}{75^{10}}\) + \(\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)
= 1 + \(\dfrac{2^5}{0,4}\) = 1+ 80 = 81
\(\dfrac{2^{13}.9^4}{6^3.8^3}\)
= \(\dfrac{2^{13}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}\) = \(\dfrac{2^{13}.3^8}{2^3.3^3.2^9}\)
= \(\dfrac{2^4.3^5}{2^3}\) = 2.3\(^5\) = 486
8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)
=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)
=7.(-7)
=-49
a, Ta có:
\(\dfrac{-13}{39}=\dfrac{-1}{3}\) và \(-\dfrac{21}{63}=\dfrac{-1}{3}\)
Vì \(\dfrac{-1}{3}=\dfrac{-1}{3}\) nên \(\dfrac{-13}{39}=-\dfrac{21}{63}\)
b, Ta có:
\(\dfrac{1}{234567}>0\) (số hữu tỉ dương) và \(-\dfrac{2}{14}< 0\) (số hữu tỉ âm)
=> \(\dfrac{1}{234567}>-\dfrac{2}{14}\)
c\(\dfrac{1}{2012}>-\dfrac{1}{14}\), Ta có:
\(\dfrac{-39}{65}=\dfrac{-3}{5}\) và \(-\dfrac{21}{35}=\dfrac{-3}{5}\)
mà \(\dfrac{-3}{5}=\dfrac{-3}{5}\) nên \(\dfrac{-39}{65}=-\dfrac{21}{35}\)
d,Ta có:
\(\dfrac{1}{2012}>0\) (số hữu tỉ dương) và \(-\dfrac{1}{14}< 0\) (số hữu tỉ âm)
Vậy suy ra: \(\dfrac{1}{2012}>-\dfrac{1}{14}\)
\(\dfrac{2^8.52+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^8.2^2.13+2^{10}.13.5}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.13+2^{10}.13.5}{2^{11}.13}\)
\(=\dfrac{2^{10}.13.\left(5+1\right)}{2^{11}.13}\)
\(=\dfrac{2^{10}.13.6}{2^{11}.13}\)
\(=\dfrac{2^{11}.13.3}{2^{11}.13}=3\)
\(\dfrac{2^8.52+2^{10}.65}{2^8.104}=\dfrac{2^8.4.13+2^{10}.65}{2^8.4.13.2}=\dfrac{2^{10}.13+2^{10}.65}{2^{10}.13.2}=\dfrac{2^{10}.\left(13+65\right)}{2^{10}.13.2}=\dfrac{2^{10}.78}{2^{10}.13.2}=\dfrac{2^{10}.2.13.3}{2^{10}.13.2}=3\)