K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

1.

a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)

b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)

Theo de bai ta co;\(x_1-x_2=17\)

Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)

\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow16m^2+33=289\)

\(\Leftrightarrow m=4\)

22 tháng 8 2019

2.

a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)

TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)

TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)

Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)

Ta co:\(x^2_1+x^2_2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)

\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)

\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)

\(\Rightarrow7m^2-11m-6=0\)

\(\Delta_m=121+168=289>0\)

\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\) 

TH2;Tuong tu 

Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)

1 tháng 3 2017

Công thức tính Δ, Δ':

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

13 tháng 10 2018

Công thức tính Δ, Δ':

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

 

NV
7 tháng 4 2022

\(x^3+8-m\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-m\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x-m+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2x-m+4=0\left(1\right)\end{matrix}\right.\)

Phương trình đã cho có 3 nghiệm pb khi và chỉ khi  (1) có 2 nghiệm pb khác -2

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-2\right)^2-2.\left(-2\right)-m+4\ne0\\\Delta'=1-\left(-m+4\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne12\\m>3\end{matrix}\right.\)

26 tháng 2 2019

m<9 ạ em nhầm!

27 tháng 2 2019

Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)

Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?

Riêng mình thì bài này mình dùng delta phẩy cho lẹ:

                                       Lời giải

Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:

\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)

\(\Leftrightarrow m< 9\)

22 tháng 11 2015

a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)+4 >0 với mọi m

   pt luôn có 2 nghiệm pb với mọi m

b) x =3 là nghiệm

 32 -(m+1).3 +2m -3 =0

=>-m +3 =0 => m =3

24 tháng 4 2020

a) Thay m=1 vào phương trình ta được:

x2+2.1.x-6.1-9=0

<=> x2+2x-6-9=0

<=> x2+2x-15=0

<=> x2+5x-3x-15=0

<=> x(x+5)-3(x+5)=0

<=> (x-3)(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

b) Thay x=2 vào phương trình ta được:

22+2.2.m-6m-9=0

<=> 4+4m-6m-9=0

<=> -2x-5=0

<=> -2x=5

<=> \(x=\frac{-5}{2}\)

30 tháng 3 2018

a) Phương trình  x 2   –   2 ( m   –   1 ) x   +   m 2   =   0  (1)

Có a = 1; b’ = -(m – 1);  c   =   m 2

b) Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

7 tháng 5 2019

Cho phương trình x2 - 2(m - 1)x + m - 3 = 0. a) Chứng minh rằng phương trình luôn có nghiệm với mọi m. b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của M = (x1)^2 + (x2)^2 - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Tham khảo bài tương tự tại đó nhé bn !

Mk chưa hok lớp 9 nên ko biết , thông cảm 

7 tháng 5 2019

Có \(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2-2mx+2x-3=0\)

\(\Leftrightarrow x\left(x-2m+1\right)=3\)

\(\Rightarrow x,x-2m+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

x13-1-3
x-2m+131-3-1
m1/23/23/21/2
     

vậy pt luôn có 2 nghiệm phân biệt.