\(3\sqrt{3}\)cm2

Số các số nguyên sa...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{\text{Δ}đều}=\dfrac{a^2\sqrt{3}}{4}=3\sqrt{3}\)

=>\(\dfrac{a^2}{4}=3\)

hay \(a=2\sqrt{3}\)

\(C=6\sqrt{3}\)

b: Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{-1;-3;1;-5\right\}\)

Vậy: Số các số nguyên x thỏa mãn là 4 số

a: \(S_{\text{Δ}đều}=\dfrac{a^2\sqrt{3}}{4}=3\sqrt{3}\)

=>\(\dfrac{a^2}{4}=3\)

hay \(a=2\sqrt{3}\)

\(C=6\sqrt{3}\)

b: Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{-1;-3;1;-5\right\}\)

Vậy: Số các số nguyên x thỏa mãn là 4 số

17 tháng 12 2016

mk hôm qua ms hỏi bài này, h lm theo trí nhớ nè...

Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)

\(2+\frac{5}{\sqrt{x}-1}\) là nguyên \(\Rightarrow\frac{5}{\sqrt{x}-1}\) là nguyên

\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\)

\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)

\(\sqrt{x}-1\) là số nguyên

\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)

\(\Rightarrow x\in\left\{4;36\right\}\)

Vậy tập hợp A có 2 phần tử

 

17 tháng 12 2016

2

17 tháng 12 2016

Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)

\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)

\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)

Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)

\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)

\(\Rightarrow x\in\left\{4;36\right\}\)

Vậy số phần tử của tập hợp A là 2

21 tháng 8 2020

\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)

\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)

\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)

\(\Leftrightarrow7x-7=6x+30\)

\(\Leftrightarrow7x-6x=7+30\)

\(\Leftrightarrow x=37\)

Vậy nghiệm của phương trình là x = 37