Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi SO là đường cao của hình chóp
Khi đó △ AOB là tam giác đều cạnh
AB=6cm ⇒ OA=6cm
Trong tam giác vuông SOA áp dụng pi-ta-go ta tính được SO = 8cm
Vậy chọn đáp án B
Sxq=1/2*40*13=20*13=260cm2
Độ dài cạnh ở đáy là 40/4=10cm
V=10^2*12=1200cm3
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
⇒ SO2 = SA2 – OA2 = SA2 – (AC/2)2 = 242 - = 376
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp:
b) Gọi H là trung điểm của CD
SH2 = SD2 – DH2 = 242 – = 476
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxq = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ = AB2 = 202 = 400 (cm2 )
⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
a)
Ta có: các mặt bên của hình chóp đều là những tam giác đều cạnh 5cm. Đường cao của mỗi mặt bên:
b)
Mặt bên của hình chóp lục giác đều là tam giác cân có cạnh bên 10cm, cạnh đáy 6cm.
Diện tích toàn phần của hình chóp là:
Stp = Sxq + Sđ = 171,72 + 93,6 = 265,32(cm2)
Chọn đáp án A
Gọi O là giao điểm của AC và BD.
Áp dụng định lí Pytago vào tam giác vuông ABC có:
Áp dụng định lí Pytago vào tam giác vuông SAO có:
S O 2 = S A 2 - A O 2 = 13 2 - 5 2 = 144 nên SO = 12cm
a) Ta có các mặt bên của hình chóp đều là những tam giác đều cạnh 5cm. Đường cao của mỗi mặt bên :
SH = √SC2−HC2SC2−HC2
= √52−2,5252−2,52 = √18,75 ≈ 4,33 (cm)
Diện tích xung quanh hình chóp:
Sxq = p.d = 1212.5.4. 4,33 = 43,3 (cm2)
Diện tích đáy hình chóp:
Sđ = a 2 = 52 = 25(cm2)
Diện tích toàn phần hình chóp:
Stp = Sxq + Sđ = 43,3 + 25 = 68,3 (cm2)
Xem thêm tại: http://loigiaihay.com/bai-48-trang-124-sgk-toan-lop-8-tap-2-c43a6297.html#ixzz5FeMLVE4p
Mặt bên của hình chóp lục giác đều là tam giác cân có cạnh bên 5cm, cạnh đáy 6cm.
Đường cao SH của mặt bên là :
SH = √SA2−AH2SA2−AH2 = √52−3252−32 = √16 = 4 (cm)
Diện tích xung quanh hình chóp:
Sxq = p.d = 1212.6.6 .4 =72 (cm2)
Đáy của hình chóp là lục giác đều. Diện tích lục giác bằng 6 lần diện tích tam giác đều ABO.
Chiều cao của tam giác đều là:
OH = √OB2−BH2OB2−BH2 = √62−3262−32 = √27 ≈ 5,2 (cm)
Diện tích đáy hình chóp:
Sđ = 6.1212.6.5,2 = 93,6 (cm2)
Diện tích toàn phần hình chóp:
Stp = Sxq + Sđ =72 + 93,6 =165,6 (cm2)
linh hk bt lm
Kẻ SO vuông góc (ABC)
=>SO là trung đoạn của hình chóp S.ABC và O là tâm của ΔABC
Gọi giao của AO với BC là E
=>AO vuông góc BC tại E
ΔABC đều có AE là đường cao và O là tâm
nên AO=2/3AE và \(AE=\dfrac{6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)
=>\(AO=2\sqrt{3}\left(cm\right)\)
ΔSAO vuông tại O
=>SO^2+OA^2=SA^2
=>\(SO^2+12=5^2\)
=>\(SO=\sqrt{13}\left(cm\right)\)
\(S_{XQ}=\dfrac{1}{2}\sqrt{13}\cdot6\cdot3=9\sqrt{13}\)
=>Không có câu nào đúng
Sorry cho sửa lại
Thể tích hình chóp là: \(V=\dfrac{1}{3}\cdot4\cdot\dfrac{27\sqrt{3}}{4}=9\sqrt{3cm^3}\)