Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cạnh tam giác là a
=> h =a\(\sqrt{3}\)/2
=> S =ah/2 = 121\(\sqrt{3}\)
=> a.a\(\sqrt{3}\)/2 = 121\(\sqrt{3}\)
=> a2 = 2.121
=> a =11\(\sqrt{2}\)
Áp dụng công thức Heron:
`p=(a+b+c)/2=(10+10+10)/2=15`
`=> S=\sqrt(p(p-a)(p-b)(p-c)) = \sqrt(15(15-10)^3) = 25\sqrt3`
giả sử cạnh của tam giác đều là a
ta áp dụng pitago ta tính được đường cao là \(\sqrt{a^2-\frac{1}{2}a^2}=\frac{\sqrt{3}}{2}a\)
Diện tích của tam giác là \(S=\frac{1}{2}.a.\frac{\sqrt{3}}{2}a=\frac{\sqrt{3}}{4}a^2\)
theo bài ra : \(S=\frac{\sqrt{3}}{4}a^2=121\sqrt{3}\)
\(\Rightarrow a^2=484\Rightarrow a=22\)
vậy chu vi tam giác đều là C= 22.3 = 66cm
từ I kẻ IM vuông góc AC , từ B kẻ BN vuông góc AC => IM // BN
áp dụng định lý Menelous vào tam giác BCD có 3 điểm A ,I , E thẳng hàng và cắt 3 cạnh tam giác :
\(\dfrac{EC}{EB}\cdot\dfrac{IB}{ID}\cdot\dfrac{AD}{AC}=1\)
=> 2 . \(\dfrac{IB}{ID}\) . 3/4 = 1
=> \(\dfrac{IB}{ID}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{DI}{DB}=\dfrac{3}{7}\)
Do IM // BN => \(\dfrac{DI}{DB}=\dfrac{IM}{BN}=\dfrac{3}{7}\)
S abc = \(\dfrac{1}{2}BN\cdot AC\)
S iad = \(\dfrac{1}{2}IM\cdot AD\) \(\Rightarrow\dfrac{Siad}{Sabc}=\dfrac{IM}{BN}\cdot\dfrac{AD}{AC}=\dfrac{3}{7}\cdot\dfrac{3}{4}=\dfrac{9}{28}\)
mà S iad = 18 => S abc = 28*18 : 9 = 56
Tam giác đều nếu ta gọi độ dài 1 cạnh là thì độ dài đường cao sẽ là a3√/2
Đến đây thì dễ rùi tự làm nốt nhé!! Tick nha nguyen hai yen!!!