Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\widehat{ADB}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)
\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)
\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)
\(\Leftrightarrow\widehat{C}=40^0\)
hay \(\widehat{B}=60^0\)
=>\(\widehat{BAC}=80^0\)
Bài 2:
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
Theo bài ra ta có : \(2a=3b=6c\Rightarrow\frac{2a}{6}=\frac{3b}{6}=\frac{6c}{6}\Rightarrow\frac{a}{3}=\frac{b}{2}=c\)
và \(a+b+c=180^0\)( tổng 3 góc trong tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{2}=c=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\Rightarrow a=90;b=60;c=30\)
Bài 1:
a)
Góc ở đáy = (180o-50o) : 2 = 65o
b)
Góc ở đỉnh = 180o - (50o x 2) = 80o
a.ta có:A/1=B/2=C/3 => A+B+C/1+2+3=180/6=30=> A=30;B=60
Bài 1:
a=2b=3c
=>a/6=b/3=c/2
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{6}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b+c}{6+3+2}=\dfrac{180}{11}\)
=>a=1080/11; b=540/11; c=360/11
XÉT TAM GIÁC ABC CÓ :
 + B^+ C^ =180'
MÀ Â = 2.B^ = 3.C^ => B^=3/2.C^
=>3.C^ + 3/2.C^ + C^ = 180'
=> ( 3 +3/2 +1 ).C^ = 180'
=> 11/2 .C^ = 180'
=> C^ = 360/11
=> Â = 360/11 . 3 = 1080/11
=> B^ = 180 - 360/11 - 1080/11 = 540/11
TÍCK GIÙM MIK2 NHA !