\(\widehat{A}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

Vì AB // CD nên \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\)(định lí hình thang)

Mà \(\widehat{A}=5\widehat{D}\)=> \(\widehat{5D}+\widehat{D}=180^0\)=> \(6\widehat{D}=180^0\)=> \(\widehat{D}=30^0\)(1)

Thay (1) vào \(\widehat{A}=5\widehat{D}\)ta có :

\(\widehat{A}=5\cdot30^0=150^0\)

Lại có : \(\widehat{B}=4\widehat{C}\)

=> \(4\widehat{C}+\widehat{C}=180^0\)

=> \(5\widehat{C}=180^0\)

=> \(\widehat{C}=36^0\)(2)

Thay (2) vào \(\widehat{B}=4\widehat{C}\)ta có :

=> \(\widehat{B}=4\cdot36^0=144^0\)

Vậy : ^A = 1500 , ^B = 1440 , ^C = 360 , ^D = 300

Vì AB//CD

=> A + D = 180° ( trong cùng phía) 

Mà A = 3D 

=> 3D + D = 180°

=> 4D = 180°

=> D = 45° 

=> A = 180° - 45° = 135° 

Vì ABCD là hình thang cân 

=> A = B = 135° 

=> C = D = 45°

27 tháng 9 2019

Có : \(AB//CD\)

Mà góc B và góc C ở vị trí so le trong

\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Lại có : \(\widehat{B}-\widehat{C}=10^0\)

\(\Rightarrow\widehat{B}=\left(180+10\right):2=95\)

Hok tốt

A B C D

Bài làm

Vì tứ gíc ABCD là hình thang

=> \(\widehat{B}+\widehat{C}=180^0\)( Tổng hai góc kề cạnh bên )

Số đo góc B là:

\(\left(180^0+10^0\right):2=95^0\)

Vậy \(\widehat{B}=95^0\)

# Học tốt #

25 tháng 7 2018

1) \(\widehat{A}+\widehat{D}=180^O\)

=> \(\widehat{A}=180^O-60^O=120^O\)

2) \(\frac{\widehat{B}}{\widehat{D}}=\frac{4}{5}\)=> \(\widehat{B}=60.\frac{4}{5}=48^O\)

Ta có: \(\widehat{B}+\widehat{C}=180^o\)

        => \(\widehat{C}=180^o-48^{^{ }o}=132^o\)

25 tháng 7 2018

không biết mik giải đúng ko mà đáp án nó không đúng thực tế lắm

2 tháng 7 2019

Sai đề rồi bn nhé :\(\widehat{A}+\widehat{D}=\widehat{B}+\widehat{C}\) 

Vì AB//CD \(\Rightarrow\widehat{A}+\widehat{D}=180\) ;\(\widehat{B}+\widehat{C}=180\) 

=>đpcm

10 tháng 7 2017

A B C D

a)

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)

\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)

\(\Leftrightarrow3\left(C+D\right)=720^o\)

\(\Leftrightarrow C+D=240^o\)

\(\Leftrightarrow A+B=120\)