K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

\(C=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{2}\left(\frac{x+\sqrt{x}}{\left(x+\sqrt{x}\right)\left(x-\sqrt{x}\right)}-\frac{x-\sqrt{x}}{\left(x+\sqrt{x}\right)\left(x-\sqrt{x}\right)}\right)\)

\(C=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{2}.\frac{2\sqrt{x}}{x^2-x}=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2x\left(\sqrt{x}+1\right)}{2x\left(x-1\right)}=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}+1}{x-1}\)

\(=\frac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x\sqrt{x}-\sqrt{x}}{x\sqrt{x}-x-\sqrt{x}+1}+\frac{x-1}{x\sqrt{x}-x-\sqrt{x}+1}=\frac{x\sqrt{x}+x-\sqrt{x}-1}{x\sqrt{x}-x-\sqrt{x}+1}\)

\(=\frac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}=\frac{\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

26 tháng 9 2019

????

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0