K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

Đặt A= 1/3+1/9+1/27+1/81+1/243

A= 1/3+1/3^2+1/3^3+1/3^4+1/3^5

3A=1+1/3+1/3^2+1/3^3+1/3^4

3A-A=1+1/3+1/3^2+1/3^3+1/3^4-1/3-1/3^2-1/3^3-1/3^4-1/3^5

2A=1-1/3^5

2A=242/243

A=121/243

16 tháng 3 2016

ta bằng 121/243

duyệt nha

DT
23 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\\ =\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}\\ =>3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}\\ =>3A-A=2A=1-\dfrac{1}{3^5}\\ =>A=\dfrac{1-\dfrac{1}{3^5}}{2}=\dfrac{3^5-1}{2.3^5}\)

12 tháng 9 2017

\(=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}\)

\(=9\)

5 tháng 10 2016

Đặt \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)

\(3A=3+1+...+\frac{1}{3^4}\)

\(3A-A=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2A=3-\frac{1}{3^5}\)

\(A=\frac{3-\frac{1}{3^5}}{2}\)

 

 

5 tháng 10 2016

Đặt \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

      \(S=1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\)

\(S\times3=\left(1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\right)\times3\)

\(S\times3=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

Xét: \(S\times3-S=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

              \(S\times2=3-\frac{1}{243}\)

              \(S\times2=\frac{728}{243}\)

                    \(S=\frac{728}{243}\div2\)

                    \(S=\frac{364}{243}\)

Vậy \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{364}{243}\)

5 tháng 8 2016

1 + 2/   =

1+ 2/

1 + 2/3

5 tháng 8 2016

\(\text{Đ}\text{ặt}:A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=3-\frac{1}{729}\)

\(\Rightarrow2A=\frac{2186}{729}\)

\(\Rightarrow A=\frac{2186}{729}:2=\frac{1093}{729}\)

6 tháng 5 2019

tổng các ps trên là ; \(\frac{364}{729}\)

6 tháng 5 2019

đặt biểu thức đó là X

ta có :

\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3X-X=1-\frac{1}{729}\)

\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)