\(\frac{2}{1.2.3}\)+  \(\frac{2}{2.3.4}\)+...+  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + .....+1/98.99 - 1/99.100

= 1/2 - 1/9900

= 4949/9900

k cho minh nha

chuc ban hoc tot

5 tháng 7 2017

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(=2.\frac{1}{1.2.3}+2.\frac{1}{2.3.4}+...+2.\frac{1}{98.99.100}\)

\(=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\right)\)

\(=2.\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\right]\)

\(=2.\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\right]\)

\(=2.\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\right]\)

\(=2.\left[\frac{1}{2}.\left(1-\frac{1}{100}\right)\right]\)

\(=2.\left(\frac{1}{2}.\frac{99}{100}\right)\)

\(=\left(2.\frac{1}{2}\right).\frac{99}{100}\)

\(=1.\frac{99}{100}\)

\(=\frac{99}{100}\)

2 tháng 10 2020

a) \(A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\)

\(A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)

\(A=\frac{1}{2}-\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)

b) \(B=\frac{17}{1\cdot3\cdot5}+\frac{17}{3\cdot5\cdot7}+\frac{17}{5\cdot7\cdot9}+...+\frac{17}{47\cdot49\cdot51}\)

\(B=\frac{17}{4}\left(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+...+\frac{4}{47\cdot49\cdot51}\right)\)

\(B=\frac{17}{4}\left(\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{47\cdot49}-\frac{1}{49\cdot51}\right)\)

\(B=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}\cdot\frac{832}{2499}=\frac{208}{147}\)

5 tháng 7 2017

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

b)\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)

5 tháng 7 2017

a) 

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

b) 

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{98\cdot99\cdot100}\)

\(=\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+\frac{5-3}{3\cdot4\cdot4}+....+\frac{100-98}{98\cdot99\cdot100}\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)

\(=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

15 tháng 8 2016

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a.\left(a+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)

\(=1-\frac{1}{a+1}\)

b, \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{a.\left(a+1\right).\left(a+2\right)}\)

=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)

Chúc bạn học giỏi nha!!!

K cho mik vs nhé Hang Nguyen

15 tháng 8 2016

Ý bạn là j z, tìm quy tắc để tính hả???!!!

2 tháng 4 2017

thứ mấy bn nộp

23 tháng 7 2017

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{8.9.10}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+......+\frac{2}{8.9.10}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\frac{22}{45}.x=\frac{22}{45}\)

\(\frac{11}{45}.x=\frac{22}{45}\)

\(x=\frac{22}{45}:\frac{11}{45}\)

\(x=2\)

23 tháng 11 2018

\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)

\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)

\(H=2+4+6+...+2n\)