\(\frac{1^2}{2}.\frac{2^2}{6}.\frac{3^2}{12}.....\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 2 2021

\(B=\frac{1^2}{2}.\frac{2^2}{6}.\frac{3^2}{12}.....\frac{9^2}{90}=\frac{1^2.2^2.3^2.....9^2}{\left(1.2\right).\left(2.3\right).\left(3.4\right).....\left(9.10\right)}\)

\(=\frac{1^2.2^2.3^2.....9^2}{1.2^2.3^2.....9^2.10}=\frac{1}{10}\)

DD
4 tháng 2 2021

Bài 4: 

\(50B=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(50B=\frac{1+99}{1.99}+\frac{3+97}{3.97}+...+\frac{99+1}{49.51}\)

\(50B=1+\frac{1}{99}+\frac{1}{97}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{51}=A\)

\(\Rightarrow\frac{A}{B}=50\).

5 tháng 8 2018

\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{41.45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{8}{45}\)

\(\Rightarrow x=\frac{37}{45}+\frac{8}{45}\)

\(\Rightarrow x=1\)

3 tháng 2 2019

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)

25 tháng 8 2020

a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)

\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)

b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)

\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)

\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)

c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)

\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)

\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)

d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)

e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)

\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)

25 tháng 8 2020

a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)

\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{303}{610}\)

\(\Rightarrow B=\frac{101}{610}\)

b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)

\(\Rightarrow C=\frac{408}{205}\)

c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)

\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)

\(\Rightarrow D=\frac{1350}{271}\)

a,-3/5.2/7+-3/7.3/5+-3/7

=-3/7.2/5+(-3/7).3/5+(-3/7) 

=-3/7(2/5+3/5+1)

=-3/7.2

=-6/7

28 tháng 5 2017

a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)

Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)

\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)

\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)

\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)

Thay B và C vào A 

\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)

b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Thay E vào B

\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

28 tháng 5 2017

a)50

b)1/100

tk ủng hộ nha

22 tháng 7 2020

a) \(22\frac{1}{2}\cdot\frac{7}{9}+50\%-1,25\)

\(=\frac{45}{2}\cdot\frac{7}{9}+\frac{50}{100}-\frac{125}{100}\)

\(=\frac{5}{2}\cdot\frac{7}{1}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}=18-\frac{5}{4}=\frac{67}{4}\)

b) \(1,4\cdot\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)

\(=\frac{7}{5}\cdot\frac{15}{49}-\frac{22}{15}:\frac{11}{15}\)

\(=\frac{1}{1}\cdot\frac{3}{7}-\frac{22}{15}\cdot\frac{15}{11}\)

\(=\frac{3}{7}-2=\frac{3-14}{7}=\frac{-11}{7}\)

c) \(\left(-\frac{1}{2}\right)^2-\frac{7}{16}:\frac{7}{4}+75\%\)

\(=\frac{1}{4}-\frac{7}{16}\cdot\frac{4}{7}+\frac{75}{100}\)

\(=\frac{1}{4}-\frac{1}{4}+\frac{3}{4}=\frac{3}{4}\)

Bài 2  Bạn tự làm nhé

22 tháng 7 2020

1.a,\(22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)

\(=\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{67}{4}\)

b,Các phép tính khác làm tương tự

Đổi các số ra hết thành phân số,có ngoặc thì lm ngoặc trc,Xoq đến nhân chia trước dồi mới cộng trừ

c,tương tự

2.

a,\(1\frac{3}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)

\(\frac{8}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)

\(\frac{7}{12}\div x=\frac{-77}{20}\)

Đến đây dễ bạn tự làm

b,\(\left(2\frac{4}{5}.x+50\right)\div\frac{2}{3}=-51\)

\(\left(\frac{14}{5}x+50\right)\div\frac{2}{3}=-51\)

\(\frac{14}{5}x+50=-34\)

\(\frac{14}{5}x=-84\)

Tự làm tiếp

c,\(\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)\(\Rightarrow\left|\frac{3}{4}x-\frac{1}{2}\right|=\varnothing\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

14 tháng 6 2020

a) \(\frac{1}{3}-\frac{-1}{6}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)

b) \(2\frac{1}{3}+4\frac{1}{5}=\frac{7}{3}+\frac{21}{5}=\frac{98}{15}\)

c) \(\frac{4}{9}-\frac{13}{3}-\frac{4}{9}-\frac{10}{3}=\left(\frac{4}{9}-\frac{4}{9}\right)-\left(\frac{13}{3}+\frac{10}{3}\right)\)

\(=0-\frac{23}{3}=\frac{-23}{3}\)

d) \(4-\left(2-\frac{5}{2}\right)+0,5=4-2+\frac{5}{2}+\frac{1}{2}=2+3=5\)

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

3 tháng 6 2019

Đặt : \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta thấy :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(\frac{1}{7^2}< \frac{1}{6.7}\)

\(.......................\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

Vì \(\frac{1}{6}< \frac{6}{25}< \frac{1}{4}\)nên \(\frac{1}{6}< A< \frac{1}{4}\)hay \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)

~ Hok tốt ~

3 tháng 6 2019

Bài 1:

Đặt  \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta có: 

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

Ta có:

\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)

\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(\text{đ}pcm\right)\)

Bài 2:

\(a)\)Tách tổng A thành ba nhóm:

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)

\(A>\frac{1}{30}\cdot20+\frac{1}{50}\cdot20+\frac{1}{70}\cdot20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}\)

\(A>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\left(\text{đ}pcm\right)\)

\(b)\)Tách tổng A thành sáu nhóm:

\(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)

\(A< \frac{1}{11}\cdot10+\frac{1}{21}\cdot10+\frac{1}{31}\cdot10+\frac{1}{41}\cdot10+\frac{1}{51}\cdot10+\frac{1}{61}\cdot10\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\left(\text{đ}pcm\right)\)

#Sakura