K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

\(B=3+3^2+3^3+...+3^{2018}\)

\(3B=3.\left(3+3^2+3^3+...+3^{2018}\right)\)

\(3B=3^2+3^3+3^4+...+3^{2019}\)

\(3B-B=\left(3^2+3^3+3^4+...+3^{2019}\right)-\left(3+3^2+3^3+...+3^{2018}\right)\)

\(2B=3^{2019}-3\)

\(\Rightarrow B=\dfrac{3^{2019}-3}{2}\)

\(#WendyDang\)

5 tháng 10 2023

\(B=3^1+3^2+3^3+...+3^{2018}\)

\(3\cdot B=3^2+3^3+3^4+...+3^{2019}\)

\(B=(3^{2019}-3):2\)

11 tháng 2 2019

A = (-1)(-1)^2(-1)^3...(-1)^2019

A = (-1)^1+2+3+...+2019

A = (-1)^2039190

A = 1

S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4

4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)

4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019

4S = 2018.2019.2020.2021

S = 2018.2019.2020.2021 : 4 = ...

cảm ơn bạn nhiều nhé

18 tháng 2 2020

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

21 tháng 2 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

18 tháng 5 2018

\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2018}\)

\(\frac{3}{2}A=\frac{3}{2}\cdot\left[\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2018}\right]+\frac{1}{2}\)

\(\frac{3}{2}A=\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2019}+\frac{1}{2}\)

\(\frac{3}{2}A=\left[\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2019}\right]-\left[\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2018}\right]+\frac{1}{2}\)

\(\frac{3}{2}A=\left(\frac{3}{2}\right)^{2019}-\frac{3}{2}+\frac{1}{2}\)

Còn lại bn tự làm nốt 

17 tháng 5 2018

\(\left(\left(\left(\left(\left(\left(help\right)\right)\right)\right)\right)\right)\)

14 tháng 7 2021

9219321938921839289382983928392839238929832

27 tháng 9 2020

\(B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{2018}.\frac{\left(1+2018\right).2018}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2019}{2}=1+\frac{3+4+...+2019}{2}=1+\frac{\left(3+2019\right)2017}{2}=2039188\)

27 tháng 9 2020

thank you bạn