\(3^2\)+ \(3^3\) + ...+ 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

\(B=3+3^2+3^3+...+3^{2018}\)

\(3B=3.\left(3+3^2+3^3+...+3^{2018}\right)\)

\(3B=3^2+3^3+3^4+...+3^{2019}\)

\(3B-B=\left(3^2+3^3+3^4+...+3^{2019}\right)-\left(3+3^2+3^3+...+3^{2018}\right)\)

\(2B=3^{2019}-3\)

\(\Rightarrow B=\dfrac{3^{2019}-3}{2}\)

\(#WendyDang\)

5 tháng 10 2023

\(B=3^1+3^2+3^3+...+3^{2018}\)

\(3\cdot B=3^2+3^3+3^4+...+3^{2019}\)

\(B=(3^{2019}-3):2\)

25 tháng 7 2018

\(3^{2018}\left(3^{20}:\left(3^8\cdot3^{11}\right)+2\cdot3\right)=3^{2018}\left(3^{20}:3^{19}+2\cdot3\right)\)

\(=3^{2018}\left(3+2\cdot3\right)=3^{2018}\cdot9=3^{2018}\cdot3^2\)

\(=3^{2020}\)

14 tháng 10 2020

\(2^3.19-2^3.14+1^{2018}\)

\(=2^3\left(19-14\right)+1\)

\(=2^3.5+1\)

\(=41\)

\(10^2-\left[60:\left(5^6:5^4-3.5\right)\right]\)

\(=10^2-\left[60:\left(5^2-3.5\right)\right]\)

\(=10^2-\left[60:10\right]\)

\(=10^2-6\)

\(=94\)

14 tháng 10 2020

a) =8 . 19 - 8 . 14 + 1

    = 8 . (19 - 14) + 1

    =8 . 5 + 1

    = 40 + 1

    = 41

b) = 102 - (60 : ( 52 - 3 . 5)

    = 102 - ( 60 : ( 25 - 3 . 5)

     = 102 - ( 60 : ( 25 - 15)

      = 102 - ( 60 : 10)

       =102 - 50

         = 100 - 50 = 50 

8 tháng 8 2018

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\)

= \(2.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\right)\)

= \(1.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2019.2021}\right)\)

= \(1.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\right)\)

= \(1.\left(1-\dfrac{1}{2021}\right)\)

= \(1.\dfrac{2020}{2021}\)

= \(\dfrac{2020}{2021}\)

8 tháng 8 2018

làm cho mn câu b đikhocroi

15 tháng 9 2018

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2018}\left(1+2+...+2018\right)\)

\(B=1+\frac{1}{2}\cdot3+\frac{1}{3}\cdot6+...+\frac{1}{2018}\cdot2037171\)

\(B=1+1,5+2+...+1009,5\)

Ta có khoảng cách là 0,5

Số số hạng là : ( 1009,5 - 1 ) : 0,5 + 1 = 2018 ( số )

Tổng B là : ( 1009,5 + 1 ) . 2018 : 2 = 1019594,5

Vậy B = 1019594,5

15 tháng 9 2018

Với \(n\in N\) ta có \(\frac{1}{n}.\left(1+2+3+.......+n\right)=\frac{1}{n}.\frac{n.\left(n+1\right)}{2}=\frac{n+1}{2}\)

Lần lượt thay vào n=1,2,3,....,2018 ta được:

\(B=1+\frac{2+1}{2}+\frac{3+1}{2}+......+\frac{2018+1}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+..........+\frac{2019}{2}\)

\(=1+\frac{\left(2019+3\right).\left[\left(2019-3\right):1+1\right]}{2}\)

\(=1+\frac{2022.2017}{2}=1+2039187=2039188\)

16 tháng 8 2020

Ta có A = 3 + 32 + 33 + ... 32018

=> 3A = 32 + 33 + 34 + .... + 32019

Khi đó 3A - A = (32 + 33 + 34 + .... + 32019) - (3 + 32 + 33 + ... 32018)

         =>   2A = 32019 - 3

        =>       A = \(\frac{3^{2019}-3}{2}\)

b) Bạn xem lại đề đi ak

16 tháng 8 2020

Sửa đề : A = 1 + 3 + 32 + 33 + ... + 32017 + 32018

A = 1 + 3 + 32 + 33 + ... + 32017 + 32018

3A = 3( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )

     = 3 + 32 + 33 + ... + 32018 + 32019

3A - A = 2A

= 3 + 32 + 33 + ... + 32018 + 32019 - ( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )

= 3 + 32 + 33 + ... + 32018 + 32019 - 1 - 3 - 32 - 33 - ... - 32017 - 32018

= 32019 - 1

2A + 1 = 3n ( sửa - thành + )

<=> 32019 - 1 + 1 = 3n

<=> 32019 = 3n

<=> n = 2019

Sai thì cho mình xin lỗi ạ :)

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)