Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7x-11\right)^3=2^5.5^2+100\)
\(\left(7x-11\right)^3=800+100\)
\(\left(7x-11\right)^3=900\)
xg bạn tìm số nào mũ 3 lên thì đc 900 nhé, bạn tìm đc thì xuống dòng => 7x-11=....
b)
\(3^{x+3}-243=3^x\)
\(3^{x+3}-3^5=3^x\)
\(\Rightarrow x+3-5=x\)
\(\Rightarrow x+3=x+5\left(???\right)\)
\(2^3.19-2^3.14+1^{2018}\)
\(=2^3\left(19-14\right)+1\)
\(=2^3.5+1\)
\(=41\)
\(10^2-\left[60:\left(5^6:5^4-3.5\right)\right]\)
\(=10^2-\left[60:\left(5^2-3.5\right)\right]\)
\(=10^2-\left[60:10\right]\)
\(=10^2-6\)
\(=94\)
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15\)
\(=6.a+12+3\)
\(=6.\left(x+2\right)+3\)
Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3
Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
2) Ta có 3 là số lẻ nên 32018 là số lẻ
11 là số lẻ nên 112017 là số lẻ
Do đó 32018-112017là số chẵn nên chia hết cho 2
3)\(n+4⋮n\)
có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
4)\(3n+7⋮n\)
có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
Ta có A = 3 + 32 + 33 + ... 32018
=> 3A = 32 + 33 + 34 + .... + 32019
Khi đó 3A - A = (32 + 33 + 34 + .... + 32019) - (3 + 32 + 33 + ... 32018)
=> 2A = 32019 - 3
=> A = \(\frac{3^{2019}-3}{2}\)
b) Bạn xem lại đề đi ak
Sửa đề : A = 1 + 3 + 32 + 33 + ... + 32017 + 32018
A = 1 + 3 + 32 + 33 + ... + 32017 + 32018
3A = 3( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )
= 3 + 32 + 33 + ... + 32018 + 32019
3A - A = 2A
= 3 + 32 + 33 + ... + 32018 + 32019 - ( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )
= 3 + 32 + 33 + ... + 32018 + 32019 - 1 - 3 - 32 - 33 - ... - 32017 - 32018
= 32019 - 1
2A + 1 = 3n ( sửa - thành + )
<=> 32019 - 1 + 1 = 3n
<=> 32019 = 3n
<=> n = 2019
Sai thì cho mình xin lỗi ạ :)