K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

17 tháng 6 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

\(A=\frac{2^{100-1}}{2^{100}}\)

2 tháng 4 2023

1+1=3 :)))

11 tháng 3 2019

haha!dungs rois!

14 tháng 3 2019

trả lời: \(\frac{1}{100}\) nha

😁 😁 😁

14 tháng 7 2017

\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(F=\left(\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-2.\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)

\(F=\frac{1}{2^{51}}+\frac{1}{2^{52}}+...+\frac{1}{2^{100}}\)

14 tháng 7 2017

\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(E=1-\frac{1}{2^{100}}\)

20 tháng 1 2019

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^{3.}}+.............+\frac{1}{2^{100}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+.................+\frac{1}{2^{99}}\)

\(2B-B=1-\frac{1}{2^{100}}\)

\(B=1-\frac{1}{2^{100}}\)

\( C=\frac{1}{2}-\frac{1}{2^2}+.................+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(2 C=1-\frac{1}{2}+......................+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(2 C+C=1-\frac{1}{2^{100}}\)

\(C=\left(1-\frac{1}{2^{100}}\right):3\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

=>\(A=2A-A=2+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

\(A=2+\frac{1}{2^{98}}\)

Vậy: \(A=2+\frac{1}{2^{98}}\)

22 tháng 4 2017

Gọi \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2B-B=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow B=2-\frac{1}{2^{100}}\)

\(\Rightarrow A=2\)

Vậy A = 2

11 tháng 3 2019

Tách 100 thành 100 số 1

Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS

=> Phân số trên=1