\(A=\frac{1^2}{1^2-100+5000}+\frac{2^2}{2^2-200+5000}+...+\frac{99^2}{99^2-9900+50...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

tham khảo câu hỏi tương tự

15 tháng 11 2015

tớ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

không 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

biết 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

làm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bài

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

này

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^_^

23 tháng 11 2015

99

bài này mik làm rồi

mik bảo đảm đo 

tick mik thật nhiều nhé các bạn

25 tháng 5 2016

A=1+2+3+4+5+...+99+100

A=(1+100).100:2=101.50=5050

B=1/2+1/6+1/12+1/20+1/30+...+1/9900

B=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+....+1/99.100

B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100

B=1-1/100=99/100

25 tháng 5 2016

A = 100 x 101 : 2 = 5050

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)

    \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

      \(=1-\frac{1}{100}\)

        \(=\frac{99}{100}\)

24 tháng 5 2017

Đề là chứng minh điểu thức bằng 2 phải không bạn?

 \(\frac{200-\left(3+\frac{2}{3}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2.100-3-\frac{2}{3}-...-\frac{2}{100}}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{\left(4-3\right)+\left(2-\frac{2}{3}\right)+\left(2-\frac{2}{4}\right)+...+\left(2-\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)

\(=\frac{1+\frac{4}{3}+\frac{6}{4}+...+\frac{198}{100}}{1+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)

\(=2\)

\(\)
 

\(\frac{200-\left(3+\frac{2}{3}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)

=\(\frac{2x100-3-\frac{2}{3}-...-\frac{2}{100}}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

=\(\frac{\left(4-3\right)+\left(2-\frac{2}{3}\right)+\left(2-\frac{2}{4}\right)+...+\left(2-\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

=\(\frac{1+\frac{4}{3}+\frac{6}{4}+...+\frac{198}{100}}{1+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)

=\(\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)

=\(2\)

6 tháng 5 2017

Ta có   \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)

\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)

\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)

\(\Rightarrow A=2\)

6 tháng 5 2017

Ủa sao bạn ra được \(\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)  số 2 ở 200 đâu ra vậy ! và \(\frac{3}{2}\)nữa !