Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)
\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)
Thay vào A, ta được :
\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)
~Will~be~Pens~
theo t/c dãy tỉ số=nhau:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=>x=y=z
\(1+\frac{x}{y}=\frac{x+y}{y}=\frac{y+y}{y}=\frac{2y}{y}=2\)
\(1+\frac{y}{z}=\frac{y+z}{z}=\frac{z+z}{z}=\frac{2z}{z}=2\)
\(1+\frac{z}{x}=\frac{z+x}{x}=\frac{x+x}{x}=\frac{2x}{x}=2\)
=>B=2.2.2=8
\(\frac{3x+3y+3z}{x+y+z}\)=\(\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(\Leftrightarrow B=\left(1+\frac{\frac{1}{2}}{\frac{1}{2}}\right)\left(1+\frac{\frac{1}{2}}{\frac{-1}{2}}\right)\left(1+\frac{\frac{-1}{2}}{\frac{1}{2}}\right)\)=0
cộng thêm 2 mỗi bên : \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}\) => x =y =z ( vì tử = nhau)
=> B = 2.2.2 =8
Ta có \(x-y-z=0\)
\(\Rightarrow\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)( 1 )
Ta có:
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay điều ( 1 ) vào biểu thức ta có:
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)
\(\Rightarrow B=-1\)
Vậy B = -1
Ap dụng tính chất tỉ lệ thức ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Nên ta có
\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)
\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)
\(1+\frac{z}{x}=\frac{2y}{x}\)
Chỗ này mình làm hơi tắt nên tự hiệu nhé
\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)
x-y-z=0=>x=y+z
=>z=x-y;=>y=x-z
\(=>B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)=\left(1-\frac{x-y}{x}\right)\cdot\left(1-\frac{y+z}{y}\right)\cdot\left(1+\frac{x-z}{z}\right)\)
Câu a cậu ghi sai đầu bài rồi hay sao í! phải là \(\frac{6}{36.46}\) chứ