Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
góc BDA=180°-105°=75°
góc ABD= 90°-75°=15°
=> góc ABC=15°.2=30°
góc ACB=90°-30°=60°
2)
góc BIC=(180°- góc BAC)/2=130°
=> góc ABC=130°.2-180°=260-180°=80°
1/ góc BDC = 105* => góc ADB = 75* ( hai góc kề bù )
=> góc DBA = 90*-75*=15*
=> góc B = 2. góc DBA = 2. 15 = 30* ( phân giác BD)
=> góc C = 90* - 30*= 60*
1) góc BDA+góc BDC=180độ(kề bù)
=> góc BDA=180độ-góc BDC
=180độ-105độ
=75độ
xét tam giác BAD vuông ở A
=> góc ABD+góc ADB=90độ
=> góc ABD=90độ-góc ADB
=90độ-75độ
=15độ
góc ABD+góc CBD=15độ+15độ=30độ(vì BD là p.giác của góc B)
xét tam giác ABC vuông ở A
=> góc B+góc C=90độ
=> góc C=90độ-30độ
=60độ
2) mh k chắc chắn lắm
xét tam giác BIC có góc IBC+góc BIC +góc ICB=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc IBC+góc ICB=180độ-góc BIC
=180độ-130độ
=50độ
xét tam giác ABC có góc A+góc B+góc C=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc A=180độ-(góc B+góc C)
=180độ-(2 góc IBC+2 góc ICB)
=180độ-\(\left[2.\left(gócIBC+gócICB\right)\right]\)
=180độ-\(\left[2.50^0\right]\)
=180độ-100độ
=80độ
Vì tam giác ABC cân tại đỉnh A nên
\(\widehat{B}=\widehat{C}=60^o\)
Áp dụng định lí tổng ba góc trong một tam giác ta có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà \(\widehat{B}=\widehat{C}=60^o\)nên \(\widehat{A}=60^o\)
Vậy đáp án đúng là đáp án C
Xét tam giác ABC
Có: A+B+C=180
Hay:\(100^0+B+C=180^0\)
Vậy: \(B+C=80^0\)
\(B=\left(80+20\right):2=50^0\)
\(C=50^0-20^0=30^0\)
Ta có:
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(c^2=b.d\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\)
Do đó:\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Do đó:\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{b}\left(đpcm\right)\)
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Vậy \(\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
\(\rightarrowđpcm\)
Câu 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{3b}{9}=\frac{2c}{8}=\frac{a-3b+2c}{2-9+8}=\frac{30}{1}=30\)
\(\Rightarrow\begin{cases}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{4}=30\end{cases}\)\(\Rightarrow\begin{cases}a=60\\b=90\\c=120\end{cases}\)
a, Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
b, Áp dung TCDTSBN ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)
ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b ; a = c ; c = a => a=b=c
b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = z; z = x => x = y = z
\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c,
Theo đề bài:
ac = bb <=> bb/a = c
ab = cc <=> ab/c = c
=> bb/a = ab/c
=> bbc = aab
=> bc = ab
Mà cc = ab => cc = bc => b = c
ac/b = b
cc/a = b
=> ac/b = cc/a
=> aac = bcc
=> aa = bc
Mà bc = cc => aa = cc => a = c
=> a = b = c
\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
Qua B, kẻ Bm//a//b(tia Bm nằm giữa hai tia BA và BC)
Bm//Aa
=>\(\widehat{mBA}=\widehat{aAB}=40^0\)
Ta có: Bm//Cb
=>\(\widehat{mBC}=\widehat{bCB}=180^0-130^0=50^0\)
\(\widehat{ABC}=\widehat{mBA}+\widehat{mBC}=40^0+50^0=90^0\)