K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

a)4^2

b)x^3

9 tháng 10 2017

a, .... =4^5-3=4^2=16

b, ........=x^6-3=x^3

c, vì số mũ của (-y)là 6 chẵn nên =y^6:y^5=y^6-5=y

oho

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

\(a)4{{\rm{x}}^4}{y^6} + 2{{\rm{x}}^4}{y^6} = \left( {4 + 2} \right){x^4}{y^6} = 6{{\rm{x}}^4}{y^6}\)

\(b)3{{\rm{x}}^3}{y^5} - 5{{\rm{x}}^3}{y^5} = \left( {3 - 5} \right){x^3}{y^5} =  - 2{{\rm{x}}^3}{y^5}\)

7 tháng 6 2016

đề bắt lm cái j v

8 tháng 6 2016

phan h da thuc thanh nhan tu

30 tháng 10 2020

Bài 1.

[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >

= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2

Đặt t = x - y

bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2

           = 4t5 : t2 + 2t3 : t2 - 3t2 : t2

           = 4t3 + 2t - 3

           = 4( x - y )3 + 2( x - y ) - 3

Bài 2.

5x( x - 2 ) + 3x - 6 = 0

⇔ 5x( x - 2 ) + 3( x - 2 ) = 0

⇔ ( x - 2 )( 5x + 3 ) = 0

⇔ x - 2 = 0 hoặc 5x + 3 = 0

⇔ x = 2 hoăc x = -3/5

Bài 3.

A = x2 - 6x + 2023

= ( x2 - 6x + 9 ) + 2014

= ( x - 3 )2 + 2014 ≥ 2014 ∀ x

Dấu "=" xảy ra khi x = 3

=> MinA = 2014 <=> x = 3

Bài 4.

B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )

= [ ( 3x + 5 ) - ( 3x - 5 ) ]2

= ( 3x + 5 - 3x + 5 )2

= 102 = 100

Vậy B không phụ thuộc vào x ( đpcm )

Bài 6.

C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152

= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1

= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1

= 4029 + ... + 9 + 5 + 1

\(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)

= 2 031 120

27 tháng 7 2021

1, \(2\left(x+y\right)-5a\left(x+y\right)=\left(x+y\right)\left(2-5a\right)\)

2, \(a^2\left(x-5\right)-3\left(x-5\right)=\left(a^2-3\right)\left(x-5\right)\)

3, \(4x\left(a-b\right)+6xy\left(b-a\right)=\left(4x-6xy\right)\left(a-b\right)=2x\left(2-3y\right)\left(a-b\right)\)

4, \(y\left(a-b\right)-x\left(b-a\right)=\left(x+y\right)\left(a-b\right)\)

5, \(6x\left(x-y\right)+8y\left(y-x\right)=\left(x-y\right)\left(6x-8y\right)=2\left(3x-4y\right)\left(x-y\right)\)

6, \(4\left(x-3\right)^2-2x\left(x-3\right)=\left(x-3\right)\left[4\left(x-3\right)-2x\right]=2\left(x-3\right)\left(x-6\right)\)

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

7 tháng 8 2018

a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)

\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)

\(=2^4.5+2-5^2\)

\(=57\)

b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)

\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)

c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)

\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)

\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)

22 tháng 6 2018

yêu cầu bài này là rút gọn nha

22 tháng 6 2018

Giải:

a) \(\left(x-4\right)\left(x+4\right)-\left(1+2x\right)^2\)

\(=\left(x^2-16\right)-\left(1+4x+2x\right)\)

\(=x^2-16-1-4x-4x^2\)

\(=-17-4x-3x^2\)

Vậy ...

b) \(\left(3-2y\right)^2-\left(y-6\right)\left(y+6\right)\)

\(=9-12y+4y^2-\left(y^2-36\right)\)

\(=9-12y+4y^2-y^2+36\)

\(=45-12y+3y^2\)

Vậy ...

c) \(3x\left(x-5\right)-\left(x+7\right)\left(x-7\right)\)

\(=3x^2-15x-\left(x^2-49\right)\)

\(=3x^2-15x-x^2+49\)

\(=2x^2-15x+49\)

Vậy ...