Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2^0+2^1+..+2^{100}\)
\(\Rightarrow2A=2^1+2^2+..+2^{101}\)
lấy hiệu hai phương trình ta có
\(A=2^{101}-2^0=2^{101}-1\)
.\(B=5^1+5^2+..+5^{200}\)
\(\Rightarrow5B=5^2+5^3+..+5^{201}\)
Lấy hiệu hai phương trình ta có :
\(4B=5^{201}-5\Rightarrow B=\frac{5^{201}-5}{4}\)
Đặt \(S=2^0+2^3+2^5+...+2^{99}\Rightarrow2^2.S=2^2\left(2^0+2^3+2^5+...+2^{99}\right)\)
\(=2^2+2^5+2^7+..+2^{101}=2^2+S-2^0-2^3+2^{101}=S-5+2^{101}\)
\(\Rightarrow3S=2^{101}-5\Rightarrow S=\frac{2^{101}-5}{3}\)
\(A=2^0+2^3+2^5+...+2^{99\text{}}\)
\(\Rightarrow4A=2^3+2^5+2^7+...+2^{101}\)
\(\Rightarrow3A=2^{101}-1\)
\(\Rightarrow A=\frac{2^{101}-1}{3}\)
Cậu ơi
\(2^0=1\)đó cậu
mà đậy lầ dạng có cùng cơ số mà
mk sửa cho thành "2 "nha!
\(A=2^0+2^3+2^5+...+2^{99}.\)
\(4A=4.\left(2^0+2^3+2^5+...+2^{99}\right)\)
\(4A=2^2+2^5+2^7+....+2^{99}+2^{101}\)
\(4A-A=2^{101}-2^2\)
\(3A=2^{101}-2^2\)
\(A=\frac{2^{101}-2^2}{3}\)
Số các số hạng là : 2^99 - 2^0 = 2^98
Tổng là : (2^99 + 2^0) x 2^98 = 2^198