Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(k\right)+P\left(1-k\right)=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{2\left(1-k\right)+1}}{2^{2\left(1-k\right)}-2}=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{3-2k}}{2^{2-2k}-2}\)
\(=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^2}{2-2^{2k}}=\frac{2^{2k+1}}{2^{2k}-2}-\frac{4}{2^{2k}-2}=\frac{2\left(2^{2k}-2\right)}{2^{2k}-2}=2\) (đpcm)
Áp dụng cho câu b:
\(A=2009+P\left(\frac{1}{2009}\right)+P\left(\frac{2008}{2009}\right)+P\left(\frac{2}{2009}\right)+P\left(\frac{2007}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(\frac{1005}{2009}\right)\)
\(=2009+P\left(\frac{1}{2009}\right)+P\left(1-\frac{1}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(1-\frac{1004}{2009}\right)\)
\(=2009+2+2+...+2\) (có 1004 số 2)
\(=2009+2.1004=4017\)
\(A=\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10-5}\)
\(A=\frac{\left(2x+1\right)\left(2x+1\right)-\left(2x-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)
\(A=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)
\(A=\frac{\left(2x\right)^2+2.2x+1-\left(2x\right)^2+2.2x-1}{\left(2x-1\right)\left(2x+1\right)}:\frac{4}{10-5}\)
\(A=\frac{\left(2x\right)^2+4x+1-\left(2x\right)^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)
\(A=\frac{\left[\left(2x\right)^2-\left(2x\right)^2\right]+\left(4x+4x\right)+\left(1-1\right)}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)
\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)
\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{5}\)
\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\left(4x.5\right)\)
\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:20x\)
\(A=\frac{8x}{20x\left(2x-1\right)\left(2x+1\right)}\)
\(A=\frac{8}{20\left(2x-1\right)\left(2x+1\right)}\)
\(A=\frac{2}{5\left(2x-1\right)\left(2x+1\right)}\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Sửa đề : \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998.1}}\)
Tổng S có số số hạng là :(1998-1):1+1=1998(số)
Áp dụng bđt cosi vs hai số dương có
\(\sqrt{1.1998}\le\frac{1+1998}{2}=\frac{1999}{2}\)
\(\frac{1}{\sqrt{1.1998}}\ge\frac{2}{1999}\)
Tương tự cx có \(\frac{1}{\sqrt{2.1997}}\ge\frac{2}{1999}\)
..............
\(\frac{1}{\sqrt{k\left(1998-k+1\right)}}\ge\frac{2}{1999}\)
................
\(\frac{1}{\sqrt{1998.1}}\ge\frac{2}{1999}\)
=> \(S\ge\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1998}\)
<=> \(S\ge2.\frac{1998}{1999}\)
Ta có
\(D=\frac{2^{2x+1}}{2^{2x}-2}+\frac{2^{2\left(1-x\right)+1}}{2^{2\left(1-x\right)}-2}=\frac{2^{2x}}{2^{2x-1}-1}+\frac{2^{2\left(1-x\right)}}{2^{1-2x}-1}\)
Mà \(2^{1-2x}=\frac{1}{2^{2x-1}}\)(do 1-2x+2x-1=0)
=>\(D=\frac{2^{2x}}{2^{2x-1}-1}+\frac{2^{2\left(1-x\right)}}{\frac{1}{2^{2x-1}}-1}=\frac{2^{2x}-2^{2\left(1-x\right)}.2^{2x-1}}{2^{2x-1}-1}=\frac{2^{2x}-2^1}{2^{2x-1}-1}=\frac{2\left(2^{2x-1}-1\right)}{2^{2x-1}-1}=2\)
Áp dụng D ta được
\(P\left(\frac{1}{1998}\right)+P\left(\frac{1997}{1998}\right)=2\)
\(P\left(\frac{2}{1998}\right)+P\left(\frac{1996}{1998}\right)=2\)
..............................................................
Do \(x\ne\frac{1}{2}\)nên không có \(P\left(\frac{999}{1998}\right)\)
\(P\left(\frac{998}{1998}\right)+P\left(\frac{1000}{1998}\right)=2\)
=> \(A=1997+2+2+....+2\)(998 số 2)
=> \(A=1997+2.998=3993\)
Vậy A=3993