\(A=1997+P\left(\frac{1}{1998}\right)+P\left(\frac{2}{1998}\right)+...+P\left(\frac{1997}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Ta có

\(D=\frac{2^{2x+1}}{2^{2x}-2}+\frac{2^{2\left(1-x\right)+1}}{2^{2\left(1-x\right)}-2}=\frac{2^{2x}}{2^{2x-1}-1}+\frac{2^{2\left(1-x\right)}}{2^{1-2x}-1}\)

Mà \(2^{1-2x}=\frac{1}{2^{2x-1}}\)(do 1-2x+2x-1=0)

=>\(D=\frac{2^{2x}}{2^{2x-1}-1}+\frac{2^{2\left(1-x\right)}}{\frac{1}{2^{2x-1}}-1}=\frac{2^{2x}-2^{2\left(1-x\right)}.2^{2x-1}}{2^{2x-1}-1}=\frac{2^{2x}-2^1}{2^{2x-1}-1}=\frac{2\left(2^{2x-1}-1\right)}{2^{2x-1}-1}=2\)

Áp dụng D ta được

\(P\left(\frac{1}{1998}\right)+P\left(\frac{1997}{1998}\right)=2\)

\(P\left(\frac{2}{1998}\right)+P\left(\frac{1996}{1998}\right)=2\)

..............................................................

Do \(x\ne\frac{1}{2}\)nên không có \(P\left(\frac{999}{1998}\right)\)

\(P\left(\frac{998}{1998}\right)+P\left(\frac{1000}{1998}\right)=2\)

=> \(A=1997+2+2+....+2\)(998 số 2)

=> \(A=1997+2.998=3993\)

Vậy A=3993

NV
29 tháng 8 2020

\(P\left(k\right)+P\left(1-k\right)=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{2\left(1-k\right)+1}}{2^{2\left(1-k\right)}-2}=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{3-2k}}{2^{2-2k}-2}\)

\(=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^2}{2-2^{2k}}=\frac{2^{2k+1}}{2^{2k}-2}-\frac{4}{2^{2k}-2}=\frac{2\left(2^{2k}-2\right)}{2^{2k}-2}=2\) (đpcm)

Áp dụng cho câu b:

\(A=2009+P\left(\frac{1}{2009}\right)+P\left(\frac{2008}{2009}\right)+P\left(\frac{2}{2009}\right)+P\left(\frac{2007}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(\frac{1005}{2009}\right)\)

\(=2009+P\left(\frac{1}{2009}\right)+P\left(1-\frac{1}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(1-\frac{1004}{2009}\right)\)

\(=2009+2+2+...+2\) (có 1004 số 2)

\(=2009+2.1004=4017\)

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

31 tháng 7 2019

\(A=\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10-5}\)

\(A=\frac{\left(2x+1\right)\left(2x+1\right)-\left(2x-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{\left(2x\right)^2+2.2x+1-\left(2x\right)^2+2.2x-1}{\left(2x-1\right)\left(2x+1\right)}:\frac{4}{10-5}\)

\(A=\frac{\left(2x\right)^2+4x+1-\left(2x\right)^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{\left[\left(2x\right)^2-\left(2x\right)^2\right]+\left(4x+4x\right)+\left(1-1\right)}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{5}\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\left(4x.5\right)\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:20x\)

\(A=\frac{8x}{20x\left(2x-1\right)\left(2x+1\right)}\)

\(A=\frac{8}{20\left(2x-1\right)\left(2x+1\right)}\)

\(A=\frac{2}{5\left(2x-1\right)\left(2x+1\right)}\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

5 tháng 9 2019

Sửa đề : \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998.1}}\)

Tổng S có số số hạng là :(1998-1):1+1=1998(số)

Áp dụng bđt cosi vs hai số dương có

\(\sqrt{1.1998}\le\frac{1+1998}{2}=\frac{1999}{2}\)

\(\frac{1}{\sqrt{1.1998}}\ge\frac{2}{1999}\)

Tương tự cx có \(\frac{1}{\sqrt{2.1997}}\ge\frac{2}{1999}\)

..............

\(\frac{1}{\sqrt{k\left(1998-k+1\right)}}\ge\frac{2}{1999}\)

................

\(\frac{1}{\sqrt{1998.1}}\ge\frac{2}{1999}\)

=> \(S\ge\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1998}\)

<=> \(S\ge2.\frac{1998}{1999}\)