Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)
Thiết lập tương tự hai BĐT còn lại và cộng theo vế,ta có:
\(a^3+b^3+c^3+6\ge3\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+6\ge39\)
\(\Leftrightarrow a^3+b^3+c^3\ge33\)
Mà theo đề bài \(a^3+b^3+c^3=27< 33\rightarrow\)vô lí.
Do đó đề sai!
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
Ta có:
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b,c=-1\\b=-c,a=-1\\c=-a,b=-1\end{matrix}\right.\)
Trường hợp a = -b
\(\Rightarrow a^{2019}+b^{2019}+c^{2019}=\left(-b\right)^{2019}+b^{2019}+c^{2019}=c^{2019}=\left(-1\right)^{2019}=-1\)
Các trường hợp khác tương tự đều có kq = -1
2. \(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(Q=4x^2+5x-12x-15+2019\)
\(Q=4x^2-7x+2004\)
\(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\)
\(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)
\(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)
\(\Rightarrow Q\ge\frac{32255}{16}\)
\(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)
3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\) (do a+b=1)
\(T=4a^2-4ab+4a^2-6a^2-6b^2\)
\(T=-2a^2-4ab-2b^2\)
\(T=-2\left(a^2+2ab+b^2\right)\)
\(T=-2\left(a+b\right)^2\)
\(T=-2.1^2=-2.1=-2\) (do a+b=1)
Gọi \(A_k=1+2+3+...+k=\frac{k\left(k+1\right)}{2}\)
\(A_{k-1}=1+2+3+....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\)
Khi đó:\(A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2}{4}-\frac{k^2\left(k-1\right)^2}{4}=\frac{k^2\left(k+1\right)^2-k^2\left(k-1\right)^2}{4}=\frac{k^2\cdot4k}{4}=k^3\)( Chỗ này mik làm hơi tắt tí,áp dụng HĐT vô thôi )
Áp dụng vào bài toán,ta có:
\(1^3=A_1^2\)
\(2^3=A_2^2-A_1^2\)
\(..................................\)
\(2019^3=A_{2019}^2-A_{2018}^2\)
\(\Rightarrow1^3+2^3+3^3+....+2019^3=A_{2019}^2=\left[\frac{2019\cdot2020}{2}\right]^2\)
Bạn tính nốt nhé !