Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
=\(\frac{1}{3}-\frac{1}{9}\)
=\(\frac{2}{9}\)
Ủng hộ mik nhá ^_^
A = ( 1 - 1/2 ) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x ... x ( 1 - 1/19 ) x ( 1 - 1/20 )
A = ( 2/2 - 1/2 ) x ( 3/3 - 1/3 ) x ( 4/4 - 1/4 ) x ... x ( 19/19 - 1/19 ) x ( 20/20 - 1/20 )
A = 1/2 x 2/3 x 3/4 x ... x 18/19 x 19/20
A = 1 x 2 x 3 x ... x 18 x 19/2 x 3 x 4 x ... x 19 x 20
A = 1/20
B = 1/4x5 + 1/5x6 + 1/6x7 + ... + 1/98x99
B = 1/4 - 1/5 + 1/5 - 1/6 + `1/6 - 1/7 + ... + 1/98 - 1/99
B = 1/4 - 1/99
B = 95/396
Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)
\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)
\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)
\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)
\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)
\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)
\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)
Áp dụng vào B ta được:
\(B=100.101.201:6-4.50.51.101:6=166650\)
\(\Rightarrow A=166650+\left(200+2\right).100:2\)
\(\Rightarrow A=166650+10100=176750\)
Vậy A = 176750
Chúc bạn học tốt!!
AK EM BẢO ANH NÈ EM NHỜ ANH CHỨ KO PHẢI EM TRẢ LỜI HỘ ANH
Bài 1:
a) A=1+22+24+.................+2100
2A=(1+22+24+.................+2100)
2A=2+23+...+2101
2A-A=(2+23+...+2101)-(1+22+24+.................+2100)
A=2101-1
b)bạn tự làm
c) C=-1/90-1/72-1/50-1/42-1/30-1/20-1/12-1/6-1/2
\(=-\left(\frac{1}{90}+\frac{1}{72}+...+\frac{1}{2}\right)\)
\(=-\left(\frac{1}{10.9}+\frac{1}{9.8}+...+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{10}-1\right)\)
\(=-\left(-\frac{9}{10}\right)=\frac{9}{10}\)
Bài 2:
cứ tính lần lượt là ra
Ta có ; K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{90}\)
\(=1+\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{9.10}\right)\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=1+1-\frac{1}{5}\)(nhân phá ngoặc)
\(=2-\frac{1}{5}\)< 2
Vậy K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)< 2
A=0 rồi mà bạn