K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2023

\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)

\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)

-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6

2 tháng 1 2022

Ta có \(2S=2^n+2\cdot2^{n-1}+3\cdot2^{n-2}+...+\left(n-1\right)\cdot2^2+2n\\ \Rightarrow2S-S=2^n+\left(2\cdot2^{n-1}-2^{n-1}\right)+\left(3\cdot2^{n-2}-2\cdot2^{n-2}\right)+...+2n-n\\ \Rightarrow S=2^n+2^{n-1}+2^{n-2}+...+2^2+2-n\\ \Rightarrow S=2\left(2^n-1\right)-n=2^{n+1}-\left(n+2\right)\)

3 tháng 1 2022

\(S=2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2+n\)

\(\text{Đặt:}S_n=1.2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2^1+n\left(1\right)\text{ Với }n\ge1\)

\(\text{Dễ thấy:}S_1=1\)

\(\text{Từ (1) ta có:}\)

\(2S_n+\left(n+1\right)=1.2^n+2.2^{n-1}+3.2^{n-2}+...+\left(n-1\right).2^2+n.2^1+\left(n+1\right)=S_{n+1}\) \(\Rightarrow S_n=2.S_{n-1}+n\)

\(\Leftrightarrow\left(S_n+n+2\right)=2\left(S_{n-1}+\left(n-1\right)+2\right)=2^2\left(S_{n-2}+\left(n-2\right)+2\right)=...=2^{n-1}\left(S_1+\left(1\right)+2\right)=2^{n-1}.4=2^{n+1}\)\(\text{ Do đó ta có:}S_n=2^{n+1}-\left(n+2\right)\)

12 tháng 4 2020

1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)

\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)

\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)

\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)

2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)

\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)

\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )