Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
Bài làm:
Bài 1
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\rightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
Bài 2
a) \(25^3\div5^2=\left(5^2\right)^3\div5^2=5^6\div5^2=5^4\)
b) \(\left(\frac{3}{7}\right)^{21}\div\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}\div\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}\div\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c) \(3-\left(\frac{-6}{7}\right)^0+\left(\frac{1}{2}\right)^2\div2=3-1+\frac{1}{4}\times\frac{1}{2}=2+\frac{1}{8}=\frac{17}{8}\)
Bài 3
a) \(9\times3^3\times\frac{1}{81}\times3^2=3^2\times3^3\times\frac{1}{3^4}\times3^2=3^3\)
b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)=2^2\times2^5\div\left(2^3\times\frac{1}{2^4}\right)=2^7\div\frac{1}{2}=2^6\)
c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2=3^2\times2^5\times\frac{2^2}{3^2}=3^2\times\frac{2^7}{3^2}=2^7\)
d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{3}\times9^2=\left(\frac{1}{3}\right)^3\times3^4=\frac{1}{3^3}\times3^4=3^1\)
Lời giải:
\(S_{35}=1-2+3-4+...+35\)
\(=(1-2)+(3-4)+...+(33-34)+35=(-1)+..+(-1)+35\)
\(=(-1).17+35=18\)
\(S_{60}=1-2+3-4+...-60=(1-2)+(3-4)+...+(59-60)\)
\(=(-1)+(-1)+...+(-1)=-30\)
Do đó:
\(S_{35}+S_{60}=-18+30=12\)
\(S_{35}=1-2+3-4+...+35\)
\(\Rightarrow S_{35}=\left(-1\right)+\left(-1\right)+...+35=17.\left(-1\right)+35=18\)
\(S_{60}=1-2+3-4+...+60\)
\(\Rightarrow S_{60}=\left(-1\right)+\left(-1\right)+...+59-60=30.\left(-1\right)=-30\)
\(\Rightarrow S_{35}+S_{60}=18-30=-12\)