\(A=1+2+2^2+2^3+...+2^{2020}\)

        \(B=1+5+5^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

A= 1+2+ 22+ 23+...+22020

2A= 2.(1+2+ 22+ 23+...+22020)

2A= 2+ 22+ 23+...+22020+22021

2A-A= (2+ 22+ 23+...+22020+22021)- (1+2+ 22+ 23+...+22020)

A= 22021-1

Vậy...

9 tháng 2 2020

B= 1+5+52+53+...+52005

5B= 5.(1+5+52+53+...+52005)

5B= 5+52+53+...+52005+52006

5B-B= (5+52+53+...+52005+52006) - (1+5+52+53+...+52005)

4B= 52006 -1

B= (52006 -1) :4

Vậy....

A=13+57+...+20012003+2005S=1−3+5−7+...+2001−2003+2005

=(13)+(57)+...+(20012003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)

=(2).1002+2005=(−2).1002+2005

=2004+2005=−2004+2005

=1

9 tháng 1 2016

ai làm được cho 10 tick

9 tháng 1 2016

a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)

                 \(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B                                                                                        Vay A<B    

b,lam tuong tu nhu y a

 

             

             

28 tháng 8 2020

b)

\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)

\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)

\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)

\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)

\(\Rightarrow-5< x< \frac{86}{105}\)

\(x\in Z\left(gt\right)\)

\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)

Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)

6 tháng 7 2018

Cách 1 làm bt

6 tháng 7 2018

nguyễn tấn tài còn cách 2 làm thế nào

22 tháng 5 2019

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

22 tháng 5 2019

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)

10 tháng 7 2019

a) \(\frac{2}{5}:\left(2x+\frac{3}{4}\right)=-\frac{7}{10}\)

=> \(2x+\frac{3}{4}=-\frac{7}{10}:\frac{2}{5}\)

=> \(2x+\frac{3}{4}=-\frac{7}{4}\)

=> \(2x=\frac{-7}{4}-\frac{3}{4}\)

=> \(2x=-\frac{5}{2}\)

=> \(x=\frac{-5}{2}:2\)

=> \(x=\frac{-5}{4}\)

b) \(\frac{x+1}{3}=\frac{2-x}{2}\)

\(\Rightarrow2\left(x+1\right)=3\left(2-x\right)\)

\(\Rightarrow2x+2=6-3x\)

\(\Rightarrow2x-3x=6-2\)

\(\Rightarrow-x=4\)

\(\Rightarrow x=4\)

10 tháng 7 2019

c) \(\left|x-\frac{3}{5}\right|.\frac{1}{2}-\frac{1}{5}=0\)

\(\Rightarrow\left|x-\frac{3}{5}\right|.\frac{1}{2}=\frac{1}{5}\)

\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{1}{5}:\frac{1}{2}\)

\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{2}{5}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}=\frac{2}{5}\\x-\frac{3}{5}=-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+\frac{2}{5}\\x=\frac{3}{5}+-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

d) \(x^2-4x=0\)

Ta có : \(x^2-4x=0\)

\(\Rightarrow xx-4x=0\)

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=0+4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)

\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)

\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)

Học good

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)

\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}\)

\(=-\frac{101}{200}\)