Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài dài dài kia tí mình làm cho :)
( x - 1 )3 - x( x - 2 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1
= x3 - 3x2 + 3x - x3 + 4x2 - 4x
= x2 - x = x( x - 1 )
2x( 3x + 2 ) - 3x( 2x + 3 )
= 6x2 + 4x - 6x2 - 9x
= -5x
( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )
= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2
= 2x2 + 6x + 17
( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10
= 2x2 - 7x - 15 + 6x - 2x2 + x - 10
= -25
( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x
= x3 + 53 - x( x2 - 8x + 16 ) + 16x
= x3 + 125 - x3 + 8x2 - 16x + 16
= 8x2 + 125
( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )
= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2
= -12x - 24 = -12( x + 2 )
Tương tự ...
a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)
b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)
c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)
a ) \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)
b ) \(\left(4x^4y^4-12x^2y^2\right):4x^2y^2=x^2y^2-3\)
c ) \(\frac{3x^2-1}{2x}+\frac{x^2+1}{2x}=\frac{3x^2-1+x^2+1}{2x}=\frac{4x^2}{2x}=2x\)
d ) \(\frac{x^2}{x-1}+\frac{2x}{1-x}+\frac{1}{x-1}=\left(\frac{x^2}{x-1}+\frac{1}{x-1}\right)+\frac{2x}{1-x}\)
\(=\frac{x^2+1}{x-1}+\frac{2x}{1-x}=\frac{x^2+1}{x-1}+\frac{-2x}{x-1}=\frac{x^2+1-2x}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
a) .......=x2-x-2
b) .........=x2y2-3
c) .......=(3x2-1+x2+1)/2x=4x2/2x=2x
d) x2 /(x-1)+(-2x)/(x-1)+1/(x-1)=(x2-2x+1)/(x-1)=(x-1)2/(x-1)=x-1
e)...
x-y=4
=> x2-2xy+y2=16
<=> 106-2xy =16 (vì x2+y2 =106)
=>xy=(106-16)/2=45
ta có x3 -y3 =(x-y)(x2+xy+y2 )
=4(106+45)=604
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
hơi dài, thôi chăm chỉ tí có sao :v =))
\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)
\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)
\(=-4x^4+2x^3-x-3x^5+2x^2\)
\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)
\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)
\(=4x^2-4x+8x^5-4x^4+4x^3\)
Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)
\(=-2x^3+3x-11x^5-2x^2\)
Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =((
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
bài 1.
a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)
b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)
c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)
d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)
.bài 2
a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)
b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)
c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)
d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)
Trả lời:
Bài 1: Rút gọn biểu thức:
a) A = ( x - y )2 + ( x + y )2
= x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
b) B = ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
c) C = ( 2a + b )2 - ( 2a - b )2
= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )
= 4a2 + 4ab + b2 - 4a2 + 4ab - b2
= 8ab
d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4
= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4
= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4
= - 4x2 + 20x - 13
Bài 2: Rút gọn rồi tính giá trị biểu thức:
a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )
= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 )
= 2x2 + 6x - 2x2 + 4x + 16
= 10x + 16
Thay x = 1/2 vào A, ta có:
\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x
= 9x2 + 24x + 16 - x2 + 16 - 10x
= 8x2 + 14x + 32
Thay x = - 1/10 vào B, ta có:
\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )
= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )
= - 3x2 + 6x + 3x2 - 12
= 6x - 12
Thay x = 1 vào C, ta có:
\(C=6.1-12=-6\)
d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 )
= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x
= 4x - 5
Thay x = - 1 vào D, ta có:
\(D=4.\left(-1\right)-5=-9\)