K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020
https://i.imgur.com/9wb6VDD.jpg
25 tháng 3 2020

a)\(\left(-x^2y^5\right)^2:\left(-x^2y^5\right)=\left(-x^2y^5\right)\)

b)\(5\cdot\left(x-2y\right)^3:\left(5x-10y\right)\)

\(=5\cdot\left(x-2y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)

\(=\left(5x-10y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)

\(=\left(x-2y\right)^2\)

Thay \(x=\frac{1}{2},y=1\) vào:

\(\left(\frac{1}{2}-2\cdot1\right)^2=\left(\frac{-3}{2}\right)^2=\frac{9}{4}\)

17 tháng 6 2017

chiều mai bn nộp thì làm luôn đi còn hỏi đáp nữa !!!!!!

17 tháng 6 2017

mình làm bài 2 trước nha:

a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y

                        =(a.y+a.y)-(b.y+b.y)

                         =2.a.y-2.b.y

                        =2.y.(a-b)

b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)

5 tháng 7 2020

a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2\)

b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)

\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)

\(=x^3+x^2+x-x^2-x-1+x^3-2\)

\(=2x^3-3\)

c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2+xy-yx-y^2-2x^2+2xy\)

\(=-x^2-y^2+2xy\)

a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)

b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)

\(=x^3-1+x^3-2=2x^3-3\)

c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)

15 tháng 7 2016

a,       -5x^2 - x + 6 = 0

<=>    -5x^2 - x -5 -1 =0

<=>    (-5x^2-5)-(x+1)=0

<=>    -5(x^2-1)-(x+1)=0

<=>   -5(x-1)(x+1)-(x+1)=0

<=>    (x+1)(-5x+5-1)=0

<=>    (x+1)(-5x+4)=o

<=>    x+1=0  hoặc -5x+4=0

*) x+1=0<=>x=-1

*) -5x+4=0<=> x=4/5

b)      4x^2+x-5= 0

<=>  4x^2 - 4 +x-1=0

<=>  4(x^2-1)+(x-1)=0

<=> 4(x-1)(x+1)+(x-1)=0

<=>(x-1)(4x+4+1)=0

<=>(x-1)(4x+5)=0

<=>  x-1=0 hoặc 4x+5=0 

+) x-1=0<=> x=1

+)4x+5=0<=>x=-5/4

15 tháng 7 2016

...cách làm .. ptđt thành nhân tử

  .giải .... >>

  a . \(-5x^2-x+6=0\)

 <=> (-5x^2 +5x ) - ( 6x-6)=0 <=> -5x(x-5) -6 (x-1) =0 <=> (x-1)(-5x-6/5)=0 <=> x=1 hoặc x =-6/5

b.<=> 4x^2-4x +5x-5 = 0 <=.> 4x(x-1) +5 (x-1) <=> (x-1)(4x+5)=0 <=> x= 1 hoặc x= -5/4

...... chuẩn ko cần chỉnh .. check liền tay ..The end•••

5 tháng 7 2020

a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)

\(\Leftrightarrow2x^2+x-x^3-2x^2+x^3-x+3=3\)

\(\Leftrightarrow3=3\)( Luôn đúng với mọi x )

Vậy phương trình nghiệm đúng với mọi x

b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)

\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)

\(\Leftrightarrow-3x^3+6x^2-3x-24=12x+12\)

\(\Leftrightarrow-3x^3+6x^2-3x-24-12x-12=0\)

\(\Leftrightarrow-3x^3+6x^2-15x-36=0\)

Đến đây xem lại đề bạn nhớ :D Tìm thì tìm được nhưng thấy nó sai sai kiểu gì í

c) \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)

\(\Leftrightarrow3x\left(x-2\right)+1\left(x-2\right)=2\left(-3x-5\right)-x\left(-3x-5\right)\)

\(\Leftrightarrow3x^2-6x+x-2=-6x-10+3x^2+5x\)

\(\Leftrightarrow3x^2-6x+x+6x-3x^2-5x=-10+2\)

\(\Leftrightarrow-4x=-8\)

\(\Leftrightarrow x=2\)

d) \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)

\(\Leftrightarrow x\left(x+5\right)+3\left(x+5\right)-x\left(x+7\right)=2x+8\)

\(\Leftrightarrow x^2+5x+3x+15-x^2-7x=2x+8\)

\(\Leftrightarrow x^2+5x+3x-x^2-7x-2x=8-15\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

a, \(x\left(2x-1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)

\(\Leftrightarrow2x^2-x-x^3-2x^2+x^3-x+3=3\)

\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)

b, \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)

\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)

\(\Leftrightarrow-3x-24+6x^2-3x^3=12x+12\)

\(\Leftrightarrow-15x-36+6x^2-3x^3=0\)

Lớp 8 chưa hc vô tỉ đâu ... vô nghiệm 

c, \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)

\(\Leftrightarrow3x^2-5x-2=-x-10+3x^2\)

\(\Leftrightarrow-4x+8=0\Leftrightarrow x=2\)

d, \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)

\(\Leftrightarrow x^2+8x+15-x^2-7x=2x+8\)

\(\Leftrightarrow x+15=2x+8\Leftrightarrow-x+7=0\Leftrightarrow x=7\)

15 tháng 1 2017

Ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)

Tương tự ta có:\(\frac{b+1}{c^2+1}\ge b+1-\frac{bc+c}{2};\frac{c+1}{a^2+1}\ge c+1-\frac{ca+a}{2}\)

Cộng theo vế ta có: \(VT\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}=6-\frac{3+ab+bc+ca}{2}\)

Mà theo BĐT AM-GM: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Suy ra \(VT\ge6-3=3\)(ĐPCM)