\(\frac{\cos65}{\sin25}\)

b,\(\cot35-\cot55...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

a)

\(\frac{\cos 65}{\sin 25}=\frac{\cos (90-25)}{\sin 25}=\frac{\sin 25}{\sin 25}=1\)

\(\cot 35-\cot 55=\cot 35-\cot (90-35)=\cot 35-\tan 35\)

\(=\frac{\cos 35}{\sin 35}-\frac{\sin 35}{\cos 35}=\frac{\cos ^235-\sin ^235}{\sin 35.\cos 35}=\frac{\cos (2.35)}{\sin 35.\cos 35}=\frac{2\cos 70}{2\sin 35\cos 35}=\frac{2\cos 70}{\sin (2.35)}\)

\(=\frac{2\cos 70}{\sin 70}=2\cot 70\)

24 tháng 4 2017

a) sin25cos65=sin25sin25=1sin25∘cos65∘=sin25∘sin25∘=1

b) tg58cotg32=tg58tg58=0tg58∘−cotg32∘=tg58∘−tg58∘=0

Nhận xét: Cách giải như trên là dựa vào định lý: nếu hai góc phụ nhau thì sin của góc này bằng côsin của góc kia, tang của góc này bằng côtang của góc kia.

a) sin25∘cos65∘=sin25∘sin25∘=1sin25∘cos65∘=sin25∘sin25∘=1

b) tg58∘−cotg32∘=tg58∘−tg58∘=0tg58∘−cotg32∘=tg58∘−tg58∘=0

Nhận xét: Cách giải như trên là dựa vào định lý: nếu hai góc phụ nhau thì sin của góc này bằng côsin của góc kia, tang của góc này bằng côtang của góc kia.



26 tháng 9 2019

\(a,=\frac{2cos^2\alpha-cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =\frac{cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}\\ =cos\alpha-sin\alpha\)

\(b,sin25=cos65;cos70=sin20;Khiđó:B=1\)

21 tháng 9 2017

Ta có sin25°=cos65°

         cos70°=20sin°

=> sịn25°+cos70°/sin20°+cos65°=cos65°+sin20°/sin20°+cos65°=1

2 tháng 8 2016

b) \(\frac{\sin25+\cos70}{\sin20+\cos65}\)

xét tam giác vuông có :  sin a= cos b => cos 70 = sin (90 -70)  <=> cos 70 = sin 20

                                    cos 65 =sin 25

<=> \(\frac{\sin25+\cos70}{\sin20+\cos65}\)

=\(\frac{\sin25+\sin20}{\sin20+\sin25}=1\)

2 tháng 8 2016

 \(\frac{2\cos^2\cdot a-1}{\sin a+\cos a}=\frac{2\cos^2a-\left(\sin^2+\cos^2\right)}{\sin a+\cos a}\)

vì \(\sin^2a+\cos^2a=1\)

=\(\frac{\cos^2a-\sin^2a}{\sin a+\cos a}=\frac{\left(\cos a-\sin a\right)\left(\cos a+\sin a\right)}{\sin a+\cos a}\)

=\(\cos a-\sin a\)

a, \(\sin25^0\)\(\sin70^0\)

b, \(\cos40^0\)\(\cos75^0\)

c, \(\sin35^0\)\(\cos55^0\)

\(\cos55^0\)\(\cos35^0\)

\(\Rightarrow\)\(\sin35^0\)\(\cos35^0\)

#mã mã#

21 tháng 10 2019

a) \(A=2sin30^o-2cos60^o+tan45^o\)

\(=2\left(sin30^o-có60^o\right)+1\)

\(=2\left(sin30^o-sin30^o\right)+1=1\)

b) \(B=3sin^225^o+3sin^265^o-tan35^o+cot55^o-\frac{cot32^o}{tan58^o}\)

\(=3\left(sin^225^o+cos^225^o\right)-\left(tan35^o-cot55^o\right)-\frac{cot32^o}{cot32^o}\)

\(=3-\left(tan35^o-tan35^o\right)-1\)

\(=2\)

c) \(C=tan67^o-cos23^o+cos^216^p+cos^274^o-\frac{4cot37^o}{2tan53^o}\)

= \(tan67^o-tan67^o+sin^274^o+cos^274^o-\frac{4cot37^o}{2cot37^o}\)

\(=1-2=-1\)

d) \(D=2cot37^ocot53^o+sin^228^o-\frac{3tan54^o}{cot36^o}+sin^262^o\)

\(=2cot37^otan37^o+sin^228^o+cos^228^o-\frac{3tan54^o}{tan54^o}\)

\(=2+1-3=0\)

Mấy bài kiểu này bạn chỉ cần áp dụng tính chất tỉ số lượng giác của hai góc phụ nhau và các hệ thức trong bài tập số 14 (SGK - Tr.77) là sẽ ra thôi ok

Chúc bạn học tốt nhé! haha

a: \(\sin25^0< \sin70^0\)

b: \(\cos40^0>\cos75^0\)

c: \(\sin38^0=\cos52^0< \cos27^0\)

d: \(\sin50^0=\cos40^0>\cos50^0\)