\(\frac{1}{2\times9}+\frac{1}{9\times7}+\frac{1}{7\times19}+....+\frac{1}{252\times502}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)

\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

27 tháng 7 2015

\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)

\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)

19 tháng 7 2018

\(a,\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\)

\(=\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=13\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{7.9}\right)\)

\(=13\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(=13.\frac{2}{9}=\frac{26}{9}\)

\(b,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

P/s :Dấu chấm là dấu nhân nha

19 tháng 7 2018

phần c đâu bn

18 tháng 10 2016

Bài 1 :

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)

Bài 2 :

\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)

\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)

Bài 3 :

\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)

\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)

\(3S=\frac{1}{4}-\frac{1}{22}\)

\(S=\frac{18}{88}\div3=\frac{6}{88}\)

12 tháng 1 2016

tich mik mik tich lai cho

12 tháng 1 2016

các bạn giải hẳn cho mình đi

17 tháng 7 2016

Đặt \(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{17x19}\)

=>\(2xA=2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{17x19}\right)\)

=>\(2xA=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{17x19}\)

=>\(2xA=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\)

=>\(2xA=1-\frac{1}{19}=\frac{18}{19}\)

=>\(A=\frac{18}{19}:2=\frac{9}{19}\)

17 tháng 7 2016

(\(\frac{1}{1}-\frac{1}{3}\left(\right)+\left(\right)\frac{1}{3}-\frac{1}{5}\left(\right)+\left(\right)\frac{1}{5}-\frac{1}{7}\left(\right)+....+\left(\right)\frac{1}{17}-\frac{1}{19}\left(\right)\)\(\frac{1}{19}\)

\(\frac{1}{1}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+....+\left(\frac{1}{17}-\frac{1}{17}\right)-\frac{1}{19}\)

\(\frac{1}{1}-\frac{1}{19}=\frac{18}{19}\)

19 tháng 6 2015

A= 7/5*7 + 7/7*9 + ... + 7/53*55

A= 7/2*( 2/5*+ 2/7*9  +  ... + 2/53*55 )

A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )

A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )

A= 7/2*( 1/5-1/55 )

A= 7/2*2/11

A= 7/11

A= 7/11 > 1/2

 Nên: A > 1/2

 

B= 1/3 + 1/15 + 1/35 + ... + 1/99

B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11

B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )

B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )

B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )

B= 2*( 1/1-1/11 )

B= 2*10/11

B= 20/11

B= 20/11 < 1/2

Nên: B < 1/2

 

20 tháng 6 2015

A= 7/5*7 + 7/7*9 + ... + 7/53*55

A= 7/2*( 2/5*7 + 2/7*9  +  ... + 2/53*55 )

A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )

A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )

A= 7/2*( 1/5-1/55 )

A= 7/2*2/11

A= 7/11

A= 7/11 > 1/2

 Nên: A > 1/2

 

B= 1/3 + 1/15 + 1/35 + ... + 1/99

B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11

B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )

B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )

B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )

B= 2*( 1/1-1/11 )

B= 2*10/11

B= 20/11

B= 20/11 < 1/2

Nên: B < 1/2

5 tháng 11 2016

A.  = 1/2-1/3+1/3-1/4+1/4-1/5...+1/101-1/102=1/2-1/102=25/51.

B.  =1/5-1/10+1/10-1/15+...+1/115-1/120=1/5-1/120=23/120.

C.  = 1/5-1/7+1/7-1/9+1/9-1/11+...+1/997-1/999=1/5-1/999=994/4995.

Minh kiem tra bang may tinh roi do.

5 tháng 11 2016

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{101\times102}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}\)

\(=1-\frac{1}{102}\)

\(=\frac{101}{102}\)