K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

2A=8+23+24+...+221

2A-A=A=(8+23+24+...+221)-(4+22+23+...+220)

A=(8-4-22)+(23-23)+(24-24)+...+(220-220)+221

A=221

10 tháng 1 2016

2a=8+2^3+...+2^21

2a-a= (2^3-2^3)+....+(2^20-2^20)+2^21 +(8-4-2^2)

a=2^21

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

6 tháng 11 2023

A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... 2¹⁶) ⋮ 5

Vậy A ⋮ 5

AH
Akai Haruma
Giáo viên
23 tháng 10 2023

Lời giải:

$A=(2+2^2)+(2^3+2^4)+....+(2^{19}+2^{20})$

$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$

$=(2+2^3+...+2^{19})(1+2)=(2+2^3+...+2^{19}).3\vdots 3(1)$
---------------------

Lại có:

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{17}+2^{18}+2^{19}+2^{20})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{17})$

$=15(2+2^5+...+2^{17})\vdots 15(2)$

Từ $(1); (2)$ ta có đpcm.

23 tháng 10 2023

 

Ta có:

A=2+22+23+...+220

A=(2+22)+(23+24)...+(219+220)

A=2.(1+2)+23.(1+2)...+219.(1+2)

A=2.3+23.3...+219.3

A=3.(2+23+...+219)

vậy a chia hết cho 3 vì a=3k với k là số tự nhiên

Ta có:

A=2+22+23+...+220

A=(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220)

A=2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23)

A=2.(1+2+4+8)+25.(1+2+4+8)+...+217.(1+2+4+8)

A=2.15+25.15+...+217.15

A=(15.2.+25.+...+217)

vậy a chia hết cho 15 vì a=15k với k là số tự nhiên

 

 

 

10 tháng 11 2021

Đổi 4 thành 2 mũ 2

 

Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r

10 tháng 11 2021

Dễ:đổi 4=22

B=22+23+24+...+220

ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)

                    = 221-22

Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá

 

 

13 tháng 11 2023

Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

16 tháng 10 2021

\(A=2+2^2+...+2^{20}\\ 2A=2^2+2^3+...+2^{21}\\ A=2^{21}-2\)

16 tháng 10 2021

Đặt \(A=2+2^2+2^3+...+2^{20}\)

\(2A=2^2+2^3+2^4+...+2^{21}\)

\(2A-A=2^2+2^3+2^4+...+2^{21}-2+2^2+2^3+...+2^{20}\)

\(A=2^{21}-2\)

9 tháng 2 2021

A=2+22+23+...+220A=2+22+23+...+220

2A=22+23+24+...+2212A=22+23+24+...+221

2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)

A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2

A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯

Vậy chữ số tận cùng cả A là 0

13 tháng 1 2017

A = 2 + 22 + 23 + 24 + ... + 219 + 220

A = (2 + 22) + (23 + 24) +... + (219 + 220)

A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)

A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3

8 tháng 1 2021

do đó A chia hết cho 3

\(2A=2^1+2^2+...+2^{20}\)

\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)

\(\Leftrightarrow A=2^{20}-1\)

Vậy: A và B là hai số tự nhiên liên tiếp

18 tháng 2 2022

Cảm ơn nhé

 

17 tháng 10 2023

a) \(A=2+2^2+2^3+...+2^{20}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(A=2\cdot\left(1+3\right)+2^3\cdot\left(1+3\right)+...+2^{59}\cdot\left(1+3\right)\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)

Vậy A chia hết cho 3

________

\(A=2+2^2+2^3+...+2^{20}\)

\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)

\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)

Vậy A chia hết cho 5