Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}+\dfrac{1}{195}\)
\(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-.....+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}.\dfrac{4}{15}=\dfrac{2}{15}\)
b) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)
\(=\dfrac{4}{9}.\left(-7\right)+\dfrac{59}{9}\left(-7\right)\)
\(=-7\left(\dfrac{4}{9}+\dfrac{59}{9}\right)\)
\(=-7.7=-49\)
c) \(\left(3\dfrac{2}{5}-2\dfrac{2}{5}\right).\left(-\dfrac{5}{3}\right)+3.\left(2\dfrac{1}{2}:\dfrac{1}{2}\right)\)
\(=\left(\dfrac{17}{5}-\dfrac{12}{5}\right).\left(-\dfrac{5}{3}\right)+3.5\)
\(=-\dfrac{5}{3}+15=13\dfrac{1}{3}\)
d) \(1\dfrac{13}{5}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}+1\dfrac{19}{60}\right):1\dfrac{23}{24}\)
\(=\dfrac{2}{7}+78\dfrac{8}{15}:\dfrac{47}{24}\)
( bạn tự tính nốt câu này nha ! )
\(1,A=-\dfrac{3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
\(A=-\dfrac{3}{4}.\left(0,125-\dfrac{3}{2}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=-\dfrac{3}{4}.\left(-\dfrac{11}{8}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}:\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}.\dfrac{16}{33}-\dfrac{1}{4}\)
\(A=\dfrac{1}{2}-\dfrac{1}{4}\)
\(A=\dfrac{2}{4}-\dfrac{1}{4}\)
\(A=\dfrac{1}{4}\)
a) \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(=-\dfrac{1}{6}\cdot\dfrac{17}{28}\)
\(=-\dfrac{17}{168}\)
b) \(\left(\dfrac{15}{21}\div\dfrac{5}{7}\right)\div\left(\dfrac{6}{5}\div2\right)\)
\(=1\div\dfrac{3}{5}\)
\(=\dfrac{5}{3}\)
Ta có : \(\left(1\dfrac{2}{3}\right)\left(1\dfrac{2}{5}\right).....\left(1\dfrac{2}{2011}\right)\left(1\dfrac{2}{2013}\right)\)
\(=\dfrac{5}{3}.\dfrac{7}{5}....\dfrac{2013}{2011}.\dfrac{2015}{2013}=\dfrac{2015}{3}\)
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
A= 33.(\(\dfrac{1}{3}.\dfrac{3}{5}.\dfrac{5}{7}.....\dfrac{97}{99}\))
A=33.\(\left(\dfrac{1.3.5.....97}{3.5.7.....99}\right)=33.\dfrac{1}{99}=\dfrac{33.1}{99}=\dfrac{33}{99}=\dfrac{1}{3}\)
Vậy A = \(\dfrac{1}{3}\)
chuc thi tot