K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

A = 2002 - 1992 + 1982 -1972 + ...+ 22 - 12

A = (200+199).(200-199) + (198+197).(198-197) + ...+ (2+1).(2-1)

A = 399 + 395 + ...+ 3

A = (399+3).[(399-3):4+1]:2

A = 20 100

23 tháng 9 2018

A = 2002 - 1992 + 1982 -1972 + ...+ 22 - 12

A = (200+199).(200-199) + (198+197).(198-197) + ...+ (2+1).(2-1)

A = 399 + 395 + ...+ 3

A = (399+3).[(399-3):4+1]:2

A = 20 100

#

1 tháng 9 2018

a) ta có : \(N=-21x^{99}-21x^{98}-...-21x^2-21x\)

\(\Rightarrow xN=-21x^{100}-21x^{99}-...-21x^2-21x^2\)

\(\Rightarrow xN-N=-21x^{100}+21x\)

\(\Leftrightarrow\left(x-1\right)N=-21x^{100}+21x\Leftrightarrow N=\dfrac{21x-21x^{100}}{x-1}\)

\(\Rightarrow A=x^{100}-21x^{99}-21x^{98}-...-21x^2-21x+2010\)

\(=x^{100}+\dfrac{21x-21x^{100}}{x-1}+2010\)

\(=\dfrac{21x-21x^{100}+x^{101}-x^{100}+2010x-2010}{x-1}\)

\(=\dfrac{x^{101}-22x^{100}+2031x-2010}{x-1}\)

thay \(x=22\) ta có : \(A=\dfrac{22^{101}-22.22^{100}+2031.22-2010}{22-1}\)

\(=\dfrac{22^{101}-22^{101}+2031.22-2010}{21}=\dfrac{2031.22-2010}{21}=2032\)

vậy ............................................................................................................

câu b lm tương tự .

7 tháng 4 2019

nà ní ko có quy luật à 

28 tháng 2 2017

\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+199}{199}\)\(=1+\frac{\frac{2.3}{2}}{2}+\frac{\frac{3.4}{2}}{3}+...+\frac{\frac{199.200}{2}}{199}\)\(=1+\frac{2.3}{2.2}+\frac{3.4}{3.2}+...+\frac{199.200}{199.2}\)\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{200}{2}\)\(=\frac{2+3+4+...+200}{2}\)\(=\frac{\frac{200.201}{2}}{2}\)\(=\frac{200.201}{2.2}\)\(=10050\)

15 tháng 11 2024

trà my sai rồi,

 

20 tháng 1 2020

\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(=\left(\frac{1}{200}-1\right)\left(\frac{1}{200}+1\right)\left(\frac{1}{199}-1\right)\left(\frac{1}{99}-1\right)...\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)

\(=\frac{-199}{200}.\frac{201}{200}.\frac{-198}{199}.\frac{200}{199}...\frac{-100}{101}.\frac{102}{101}\)

\(=\left(-\frac{199}{200}.\frac{-198}{199}...\frac{-100}{101}\right)\left(\frac{201}{200}.\frac{200}{199}...\frac{102}{101}\right)\)

\(=\frac{100}{200}.\frac{201}{101}=\frac{201}{202}\)

Cảm ơn sư phụ đã chỉ bảo :3

Question 1 :

a )\(A=1+2+3+.......+n=\dfrac{1}{2}.n.\left(n+1\right)\)

b ) \(B=1^2+2^2+3^2+......+n^2=\dfrac{1}{6}.n\left(n+1\right)\left(2n+1\right)\)

c ) \(C=1^3+2^3+3^3+......+n^3=\dfrac{1}{4}.n^2.\left(n+1\right)^2\)

Question 2 :

a ) \(199^3-199=199\left(199^2-1\right)=199\left(199-1\right)\left(199+1\right)=198.199.200⋮200\left(đpcm\right)\)

b ) Ta có :

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(a,b,c>0\) \(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Wish you study well !!

Bạn nào làm được câu a , t bái bạn đó làm sư phụ :3