K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\)

b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

         \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

27 tháng 2 2017

A = -1^2 + 2^2 - 3^2 + 4^2 -....+ (vế sao mk k hiểu)

= (-1^2 +2^2) + (-3^2 + 4^2) - .... +

= 3+7+11+....(hơn kém nhau 4 đơn vị,bạn tự làm tiếp nhé)

28 tháng 2 2017

câu này có hai trường hợp là :

TH1: Nếu x là số chẵn thì

A=(2^2-1^2)+(4^2-3^2)+...+[n^2-(n-1)^2]

 =1+2+3+4+....+(n-1)+n

=[n(n+1)]/2

TH2: nếu x là số lẽ thì

A=(2^2-1^2)+(4^2-3^2)+...+[(n-1)^2-(n-2)^2]-n^2

 =1+2+3+4+....+(n-1)-n^2

=[n(n-1)]/2-n^2=-[n(n+1)]/2

ns thật là mình cũng hok hiểu lắm.

13 tháng 7 2018

Bài 2  : 

a)    C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )

<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1

<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1 

Đặt t = n2 + 5n + 5

Suy ra : C = ( t - 1 ).( t + 1 ) + 1

         => C = t2 - 1 + 1

       <=> C = t2    hay C = ( n2 + 5n + 5 )2

Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương 

                                                                             ( đpcm )

b)     E = n2 + ( n + 1 )2 + n( n + 1 )2

 <=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2

 <=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2

 <=> E = [ n( n + 1 ) + 1 ]2

 <=> E = ( n2 + n + 1 )2

Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương

                                                                        ( đpcm )

8 tháng 7 2018

a, \(A=-1^2+2^2-3^2+4^2-...-99^2+100^2\)

\(=-\left(1^2-2^2+3^2-4^2+...+99^2-100^2\right)\)

\(=-\left[\left(1+2\right)\left(1-2\right)+\left(3+4\right)\left(3-4\right)+...+\left(99+100\right)\left(99-100\right)\right]\)

\(=-\left(-3-7-...-199\right)\)

\(=3+7+...+199\)

\(=\frac{\left(199+3\right).50}{2}=5050\)