\(A=-1^2+2^2-3^2+4^2-...-99^2+100^2\)

\(B=-1^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

29 tháng 10 2016

A = -12 + 22 - 32 + 42 - ... - 992 + 1002

A = 1002 - 992 + ... + 42 - 32 + 22 - 12

A = (100 + 99).(100 - 99) + ... + (4 + 3).(4 - 3) + (2 + 1).(2 - 1)

A = 100 + 99 + ... + 4 + 3 + 2 + 1

\(A=\frac{\left(1+100\right).100}{2}=101.50=5050\)

\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

2B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)...(332 + 1)

2B = (32 - 1)(32 + 1)(34 + 1)...(332 + 1)

2B = (34 - 1)(34 + 1)...(332 + 1)

2B = 364 - 1

\(B=\frac{3^{64}-1}{2}\)

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

\(A=2018^2-2017.2019=2018^2-(2018-1)(2018+1)\)

\(=2018^2-(2018^2-1^2)=1\)

\(B=9^8.2^8-(18^4-1)(18^4+1)\)

\(=(9.2)^8-[(18^4)^2-1^2]\)

\(=18^8-(18^8-1)=1\)

\(C=163^2+74.163+37^2=163^2+2.37.163+37^2\)

\(=(163+37)^2=200^2=40000\)

\(D=\frac{2018^3-1}{2018^2+2019}=\frac{(2018-1)(2018^2+2018+1)}{2018^2+2019}\)

\(=\frac{2017(2018^2+2019)}{2018^2+2019}=2017\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Sử dụng công thức \((a-b)(a+b)=a^2-b^2\)

\(E=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^8-1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^{16}-1)(2^{16}+1)-2^{32}\)

\(=(2^{32}-1)-2^{32}=-1\)

12 tháng 7 2017

\(a,\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)

\(\Leftrightarrow2x^2+4x+4=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+2=0\)

\(\Leftrightarrow2\left(x+1\right)^2=-2\)

\(\Leftrightarrow\left(x+1\right)^2=-1\Rightarrow\) pt vô nghiệm

\(b,\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)

\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)-14x^2=0\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)

\(\Leftrightarrow-8x-17=0\)

\(\Leftrightarrow-8x=17\)

\(\Leftrightarrow x=\dfrac{-17}{8}\)

\(c,\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x^2+4x+4\right)-\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+2\right)^2=\dfrac{5}{2}\)

\(\Rightarrow\left(x+2\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x+2=-\sqrt{5}\\x+2=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}-2\\x=\sqrt{5}-2\end{matrix}\right.\)

12 tháng 7 2017

a) \(\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)

\(\Leftrightarrow2x^2+4x+4=0\Leftrightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}.\sqrt{2}x+\left(\sqrt{2}\right)^2+2=0\) \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2=0\)

ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2\ge2>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm

vậy phương trình vô nghiệm

b) \(\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)

\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)=14x^2\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8=14x^2\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)

\(\Leftrightarrow-8x-17=0\Leftrightarrow-8x=17\Leftrightarrow x=\dfrac{-17}{8}\)

vậy \(x=\dfrac{-17}{8}\)

c) \(\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}x^2-x+\dfrac{1}{2}\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x\right)^2+2.\sqrt{2}.\dfrac{\sqrt{2}}{2}x+\left(\sqrt{2}\right)^2-\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2-\dfrac{5}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2=\dfrac{5}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x+\sqrt{2}=\sqrt{\dfrac{5}{2}}\\\dfrac{\sqrt{2}}{2}x+\sqrt{2}=-\sqrt{\dfrac{5}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x=\sqrt{\dfrac{5}{2}}-\sqrt{2}=\dfrac{\sqrt{10}-2\sqrt{2}}{2}\\\dfrac{\sqrt{2}}{2}x=-\sqrt{\dfrac{5}{2}}-\sqrt{2}=-\dfrac{\sqrt{10}+2\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{matrix}\right.\)

vậy \(x=-2+\sqrt{5};x=-2-\sqrt{5}\)

18 tháng 8 2018

a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

ta có \(2+1=2^2-1\)

\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(T=2^{32}-1\)

bạn ơi nơi chổ mấy cái  \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha

b)

\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)

\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)

\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)

\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)

\(U=3+7+...+199\)

\(U=1+2+3+\text{4+...+99+100}\)

số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)

tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)

à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2