Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2 + 2.3 + 3.4+...+n.( n+1)=A
=>3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
=>3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
=>3A=n.(n+1).(n+2)
=> A=n.(n+1).(n+2)\3
Đặt A=1.2 + 2.3 + 3.4+...+n.( n+1)
=>3A=1.2.3+2.3.3+3.4.3+...+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1)(n+2)-(n-1).n.(n+2)
=n.(n+1)(n+2)-0
=n.(n+1)(n+2)
=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
A =1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3A=1.2.3+2.3.4+3.4.3+..+3n\left(n+1\right)\)
\(=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
ko chắc vì mk làm qua lâu òi hc tốt ~~:B~~
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:
gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2
a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3
a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4
.......
an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n
an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)
cộng các vế đẳng thức trên ta có:
3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1)
=>3(a1+a2+...+an-1+an)=n(n+1)(n+2)
mà A=a1+a2+...+an-1+an nên
\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
cách mình đúng;
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)((n + 2) - (n -1))
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = n(n + 1)(n + 2)/3
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
ai tk mk mk tk lại cho 3 tk
3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n(n + 1).3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + n(n + 1)[(n + 2) - (n - 1)]
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
= (1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + ..... + [ (n - 1)n(n + 1) - (n - 1)n(n + 1) ] + n(n + 1)(n + 2)
= n(n + 1)(n + 2)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
có 2 cách bạn ạ
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
học tốt
cách 2
Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
tham khảo trên mạng có cả !!