K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Bài 3:

Ta có:

\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(...\)+\(\frac{1}{2010^2}\)<\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2009.2010}\)

Xét:\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+.....+\(\frac{1}{2009+2010}\)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)=\(1-\frac{1}{2010}\)<1

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2010^2}< 1\)

\(\)Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< 1\)

3 tháng 2 2017

kobiet

19 tháng 4 2019

nhầm:mux3=mũ3

là số nguyên tố