K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 1 2022

\(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{49\times51}\)

\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{49\times51}\right)\)

\(=\frac{3}{2}\times\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+...+\frac{51-49}{49\times51}\right)\)

\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\times\left(1-\frac{1}{51}\right)=\frac{3}{2}\times\frac{50}{51}=\frac{25}{17}\)

8 tháng 8 2016

3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51

= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )

= 3 x ( 1 - 1/51 )

= 3 x      50/51

=       150/151

8 tháng 8 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

 
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

1 tháng 5 2018

\(\frac{1}{1x3}\)\(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\))                                    x \(y\) = \(\frac{2}{3}\)

\(\frac{2}{1x3}\)\(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\))                                      x \(y\)\(\frac{4}{3}\)               (nhân 2 vế lên với 2)

(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)\(\frac{1}{11}\))         x     \(y\)\(\frac{4}{3}\)

( 1 - \(\frac{1}{11}\))                                                                        x    \(y\)=\(\frac{4}{3}\)

\(\frac{10}{11}\)                  x            \(y\)                                                       =\(\frac{4}{3}\)

                                              \(y\)                                                      = \(\frac{4}{3}\)\(\frac{10}{11}\)

                                              \(y\)                                                       = \(\frac{4}{3}\)\(\frac{11}{10}\)

                                               \(y\)                                                       =\(\frac{22}{15}\)

1 tháng 5 2018

kết quả đúng nhưng mình ko hiểu bạn có thể giáng lại ko ?

25 tháng 7 2023

CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)

Ta có:

VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))

VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) +  \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))

VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )

VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))

VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)

VT = \(\dfrac{1}{2}\)  \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)

VT = \(\dfrac{n+1}{2n+3}\)  = VP (đpcm)

7 tháng 6 2016

a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25

= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25

= 1/5 - 1/25

= 4/25

b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101

= 1 - 1/101

= 100/101

c) 3/1.4 + 3/4.7 + ... + 3/2002.2005

= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005

= 1 - 1/2005

= 2004/2005

d) 5/2.7 + 5/7.12 + ... + 5/1997.2002

= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002

= 1/2 - 1/2002

= 500/1001

7 tháng 6 2016

a,A =  \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)

A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)

B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

B=\(1-\frac{1}{101}=\frac{100}{101}\)

c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)

C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)

C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)

d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)

D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)

D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)

5 tháng 7 2016

P = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49.51

P = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/51

P = 1 - 1/51

P = 50/51

Q = 1/1.3 + 1/3.5 + ... + 1/19.21

Q = 1/2 .(2/1.3 + 2/3.5 + ... + 2/19.21)

Q = 1/2.(1 - 1/3 + 1/3 - 1/5 + ... + 1/19 - 1/21)

Q = 1/2 . (1 - 1/21)

Q = 1/2. 20/21

Q = 10/21

Ủng hộ mk nha ^_-

5 tháng 7 2016

\(P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(P=1-\frac{1}{51}\)

\(P=\frac{50}{51}\)

\(Q=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)

\(Q=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)

\(Q=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)

\(Q=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)

\(Q=\frac{1}{2}.\frac{20}{21}\)

\(Q=\frac{10}{21}\)

23 tháng 7 2015

a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\frac{6}{7}\)

\(=\frac{3}{7}\)

b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(=\frac{1}{2}.\frac{2010}{2011}\)

\(=\frac{1005}{2011}\)

21 tháng 6 2021

Bạn ơi .là gì thế

 

18 tháng 7 2018

3 câu như nhau cả thôi :v

\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{55\cdot57}\)

\(A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{55\cdot57}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{55}-\frac{1}{57}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{57}\right)\)

\(A=\frac{1}{2}\cdot\frac{56}{57}\)

\(A=\frac{28}{57}\)

8 tháng 1 2016

S=1.3+3.5+5.7+....+97.99

S=(1+3+5+7+......+97).(3+5+7+........+99)

S=1+99+(3+5+7+......+97).2

S= 1+99+2400                  .2

S=1+99+ 4800

S=100+4800

S=4900

Nhớ tick cho mình nha

 

12 tháng 8 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}=\frac{1}{41}\)

=> x + 2 = 41 

=> x = 39