Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51
= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )
= 3 x ( 1 - 1/51 )
= 3 x 50/51
= 150/151
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
( \(\frac{1}{1x3}\)+ \(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\)) x \(y\) = \(\frac{2}{3}\)
( \(\frac{2}{1x3}\)+ \(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\)) x \(y\) = \(\frac{4}{3}\) (nhân 2 vế lên với 2)
(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)- \(\frac{1}{11}\)) x \(y\)= \(\frac{4}{3}\)
( 1 - \(\frac{1}{11}\)) x \(y\)=\(\frac{4}{3}\)
\(\frac{10}{11}\) x \(y\) =\(\frac{4}{3}\)
\(y\) = \(\frac{4}{3}\): \(\frac{10}{11}\)
\(y\) = \(\frac{4}{3}\)x \(\frac{11}{10}\)
\(y\) =\(\frac{22}{15}\)
CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)
Ta có:
VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )
VT = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)
VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)
VT = \(\dfrac{n+1}{2n+3}\) = VP (đpcm)
a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25
= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25
= 1/5 - 1/25
= 4/25
b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101
= 1 - 1/101
= 100/101
c) 3/1.4 + 3/4.7 + ... + 3/2002.2005
= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005
= 1 - 1/2005
= 2004/2005
d) 5/2.7 + 5/7.12 + ... + 5/1997.2002
= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002
= 1/2 - 1/2002
= 500/1001
a,A = \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)
A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
B=\(1-\frac{1}{101}=\frac{100}{101}\)
c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)
C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)
C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)
d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)
D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)
D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)
P = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49.51
P = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/51
P = 1 - 1/51
P = 50/51
Q = 1/1.3 + 1/3.5 + ... + 1/19.21
Q = 1/2 .(2/1.3 + 2/3.5 + ... + 2/19.21)
Q = 1/2.(1 - 1/3 + 1/3 - 1/5 + ... + 1/19 - 1/21)
Q = 1/2 . (1 - 1/21)
Q = 1/2. 20/21
Q = 10/21
Ủng hộ mk nha ^_-
\(P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(P=1-\frac{1}{51}\)
\(P=\frac{50}{51}\)
\(Q=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(Q=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\frac{20}{21}\)
\(Q=\frac{10}{21}\)
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}\)
\(=\frac{3}{7}\)
b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
3 câu như nhau cả thôi :v
\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{55\cdot57}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{55\cdot57}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{55}-\frac{1}{57}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{57}\right)\)
\(A=\frac{1}{2}\cdot\frac{56}{57}\)
\(A=\frac{28}{57}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 39
\(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{49\times51}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{49\times51}\right)\)
\(=\frac{3}{2}\times\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+...+\frac{51-49}{49\times51}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{51}\right)=\frac{3}{2}\times\frac{50}{51}=\frac{25}{17}\)