Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(=6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\frac{2}{3}-\frac{5}{3}+\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2+0-\frac{1}{2}\)
\(=-\frac{4}{2}-\frac{1}{2}\)
\(=-\frac{5}{2}\)
a) \(A=1.2+2.3+3.4+...+29.30\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+29.30\left(31-28\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+29.30.31-28.29.30\)
\(\Rightarrow3A=29.30.31\)
\(\Rightarrow A=29.30.31:3\)
\(\Rightarrow A=29.10.31\)
\(\Rightarrow A=8990\)
3A= 1.2.3+2.3.4+3.4.3 +......+ 29.30.3
3A= 1.2. ﴾3 ‐ 0﴿ + 2.3.﴾4 ‐ 1﴿ +3.4. ﴾5 ‐ 2﴿....... . 29.30. ﴾31 ‐ 28﴿
3A = ﴾1.2.3 + 2.3.4 + 3.4.5 +...... +18.20.21﴿ ‐ ﴾0.1.2 + 1.2.3 + 2.3.4 +.......+ 18.19.20﴿
3A = 29.30.31 ‐ 0.1.2
3A =26970‐0
3A= 26970
A=26970:3
A = 8990.
Vậy A=8990
a, \(5S=5^2+5^3+...+5^{2017}\)
\(5S-S=5^{2017}-5\)
\(S=\frac{5^{2017}-5}{4}\)
b,\(3S=3^2+3^3+...+3^{101}\)
\(3S-S=3^{101}-3\)
\(S=\frac{3^{101}-3}{2}\)
c, \(3S=3-3^2+3^3-...-3^{2016}\)
\(3S+S=1-3^{2016}\)
\(4S=1-3^{2016}\)
\(S=\frac{1-3^{2016}}{4}\)
b, 3S = 3^2+3^3+.....+3^101
2S=3S-S=(3^3+3^3+.....+3^101)-(3+3^2+....+3^100) = 3^101-3
=> S = (3^101-3)/2
Tk mk nha
\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(S=2^{2018}-1\)
\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2018}-3\)
\(S=\frac{3^{2018}-3}{2}\)
\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)
\(4S=4^2+4^3+4^4+...+4^{2018}\)
\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)
\(3S=4^{2018}-4\)
\(S=\frac{4^{2018}-4}{3}\)
\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)
\(5S=5^2+5^3+5^4+...+5^{2018}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(4S=5^{2018}-5\)
\(S=\frac{5^{2018}-5}{2}\)
Chúc em học tốt ~
đặt A = (cái trên )
2A=1+2^2+...+2^101
-
A=1+2+....+2^100
------------------------------
A= 2^101 - 1
B = 5+5^2+......+5^99
5B=5^2+5^3+....+5^100
-
B = 5+5^2+......+5^99
-----------------------------------
4B= 5^100-5
B=(5^100 - 5)/4
học tốt nha
tổng quát cho bạn luôn
A=n+n^2 + ....+ n^n
nA= n^2 + n^3 +....+n^(n+1)
-
A=n+n^2 + ....+ n^n
------------------------------------------
(n-1)A = n^(n+1) - n
A= (n^(n+1) - n) / (n-1)
ok
tuy nhiên một vài trường hợp(như câu B) thôi nha còn lại cũng na ná như thế
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)-\left(5-\frac{5}{2}+\frac{4}{3}\right)\)
\(A=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)
\(A=\left(3-2-5\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{5}{2}-\frac{5}{2}\right)+\frac{1}{2}-\frac{4}{3}\)
\(A=-4+\frac{1}{2}-1-\frac{1}{3}\)
\(A=-5+\frac{1}{2}-\frac{1}{3}\)
\(A=-5+\frac{1}{6}\)
\(A=-4\frac{5}{6}\)
\(23-\left\{4\cdot24-\left[2^5\cdot3^2-\left(180:3^2\right)\right]\right\}\)
\(=23-\left[96-\left(288-20\right)\right]\)
\(=23-\left(96-268\right)\)
\(=195\)
làm lại nha tính nhầm
=23-\(\left\{4.24\left[2^5.3^2-20\right]\right\}\)
=23-\(\left\{4.24-268\right\}\)
=23-(-172)
=195
a) 5 x (-8) x 2 x (-3)
= (5 x 2) x (-8 x (-3))
= 10 x 24
= 240
b) 3 x (-5)2 + 2 x (-5) - 20
= 3 x 25 + 2 x (-5) - 20
= 3 x 5 x (-5) + 2 x (-5) - (-5) x (-4)
= 15 x (-5) + 2 x (-5) - (-5) x (-4)
= (15 + 2 - (-4)) x (-5)
= 21 x (-5)
= -105
- 3 5 2 = - 3 2 5 2 = 9 25