Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2.4+2.4.8+4.8.16+8.16.32}{3.4+2.6.8+4.12.16+8.24.32}\)
\(=\frac{4\left(2+2.8+8.16+2.16.32\right)}{4\left(3+3.8+12.16+2.24.32\right)}\)
\(=\frac{2+2.8+8.16+2.16.32}{3+3.8+12.16+2.24.32}\)
\(=\frac{2\left(1+8+64+16.32\right)}{3\left(1+8+64+16.32\right)}=\frac{2}{3}\)
1)\(\dfrac{2}{9}+\dfrac{-3}{4}+\dfrac{5}{30}\)
\(=\dfrac{2.20}{9.20}+\dfrac{-3.45}{4.45}+\dfrac{5.6}{30.6}\)
\(=\dfrac{40}{180}+\dfrac{-135}{180}+\dfrac{30}{180}\)
\(=\dfrac{40+\left(-135\right)+30}{180}\)
\(=\dfrac{-65}{180}\)
\(=\dfrac{-13}{36}\)
2)\(\dfrac{-7}{12}-\dfrac{11}{18}\)
\(=\dfrac{-7.3}{12.3}-\dfrac{11.2}{18.2}\)
\(=\dfrac{-21}{36}-\dfrac{22}{36}\)
\(=\dfrac{-21-22}{36}\)
\(=\dfrac{-43}{36}\)
3)\(\dfrac{7}{8}-\dfrac{-5}{16}\)
\(=\dfrac{7.2}{8.2}-\dfrac{-5}{16}\)
\(=\dfrac{14}{16}-\dfrac{-5}{16}\)
\(=\dfrac{14-\left(-5\right)}{16}\)
\(=\dfrac{19}{16}\)
4)\(\dfrac{3}{8}-\dfrac{-9}{10}-\dfrac{5}{16}\)
\(=\dfrac{3.10}{8.10}-\dfrac{-9.8}{10.8}-\dfrac{5.5}{16.5}\)
\(=\dfrac{30}{80}-\dfrac{-72}{80}-\dfrac{25}{80}\)
\(=\dfrac{30-\left(-72\right)-25}{80}\)
\(=\dfrac{77}{80}\)
A=(2-4-6+8)+(10-12-14+16)+...+(2002-2004-2006+2008)
A=0+0+0+...+0
A=0
ai k cho mình thì mình k lại
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10+6\cdot12}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20+18\cdot24}\)
\(A=\frac{2\cdot3\left[1\cdot2\right]+2\cdot3\left[2\cdot4\right]+2\cdot3\left[3\cdot6\right]+2\cdot3\left[4\cdot8\right]+2\cdot3\left[5\cdot10\right]}{3\cdot4\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}\)
\(A=\frac{\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}{2\cdot3\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}=\frac{1}{2\cdot3}=\frac{1}{6}\)
rõ ràng ta chỉ cần so sánh giữa \(15^{30}+16^{12}+17^{50}-16^8\) và \(17^{30}+16^8+15^{50}-16^{12}\)
Áp dụng tính chất nếu a>b thì a-b>0 ta được:
\(15^{30}+16^{12}+17^{50}-16^8\)- \(\left(17^{30}+16^8+15^{50}-16^{12}\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(16^{12}+16^{12}\right)+\left(15^{30}-15^{50}\right)-\left(16^8+16^8\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)+2\left(16^{12}-16^8\right)\)
Vì 17^50 - 17^30 > l 15^30 - 15^50 l
nên \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)>0\)
=>\(15^{30}+16^{12}+17^{50}-16^8\)> \(17^{30}+16^8+15^{50}-16^{12}\)
=> Phân số thứ nhất > 1 và p/s thứ hai < 1
Lúc này bạn tự so sánh nha
\(a,\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{9}=\dfrac{12}{15}+\dfrac{10}{15}+\dfrac{1}{9}=\dfrac{22}{15}+\dfrac{1}{9}=\dfrac{66}{45}+\dfrac{5}{45}=\dfrac{71}{45}\)
\(b,\dfrac{3}{7}+\dfrac{11}{14}+\dfrac{19}{28}=\dfrac{12}{28}+\dfrac{22}{28}+\dfrac{19}{28}=\dfrac{53}{28}\)
\(c,\dfrac{1}{2}+\dfrac{1}{7}+\dfrac{-1}{5}=\dfrac{7}{14}+\dfrac{2}{14}+\dfrac{-1}{5}=\dfrac{9}{14}+\dfrac{-1}{5}=\dfrac{45}{70}+\dfrac{-14}{70}=\dfrac{31}{70}\)
\(d,\dfrac{7}{8}+\dfrac{5}{16}+\dfrac{-3}{4}=\dfrac{14}{16}+\dfrac{5}{16}+\dfrac{-12}{16}=\dfrac{7}{16}\)
\(e,\dfrac{1}{4}+\dfrac{5}{12}+\dfrac{-1}{13}=\dfrac{3}{12}+\dfrac{5}{12}+\dfrac{-1}{13}=\dfrac{8}{12}+\dfrac{-1}{13}=\dfrac{2}{3}+\dfrac{-1}{13}=\dfrac{26}{39}+\dfrac{-3}{39}=\dfrac{23}{39}\)
\(g,\dfrac{2}{3}+\dfrac{3}{8}+\dfrac{-5}{12}=\dfrac{16}{24}+\dfrac{9}{24}+\dfrac{-5}{12}=\dfrac{25}{24}+\dfrac{-5}{12}=\dfrac{25}{24}+\dfrac{-10}{24}=\dfrac{15}{24}\)
đáng lẽ là ở đây điền số nào cũng okie
vì đâu = 402 đâu thì + với số nào cũng đc mà
Phải có kq chính xác nha