Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
ta có: \(A=\frac{2014^{2013}+1}{2014^{2013}-1}=\frac{2014^{2013}-1+2}{2014^{2013}-1}=1+\frac{2}{2014^{2013}-1}\)
\(B=\frac{2014^{2013}-1}{2014^{2013}-3}=\frac{2014^{2013}-3+2}{2014^{2013}-3}=1+\frac{2}{2014^{2013}-3}\)
\(\Rightarrow\frac{2}{2014^{2013}-1}< \frac{2}{2014^{2013}-3}\)
\(\Rightarrow1+\frac{2}{2014^{2013}-1}< 1+\frac{2}{2014^{2013}-3}\)
=> A < B
\(\frac{2013}{2014}+\frac{5}{2014}\div5-\frac{1}{2013}\)
\(=\frac{2013}{2014}+\frac{5}{2014}.\frac{1}{5}-\frac{1}{2013}\)
\(=\frac{2013}{2014}+\frac{1}{2014}-\frac{1}{2013}\)
\(=\frac{2014}{2014}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}\)
\(=\frac{2012}{2013}\)