K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

2013/2014

12 tháng 3 2019

\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)

=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)

23 tháng 4 2016

2014+(2014/1+2)+(2014/1+2+3)+...+(2014/1+2+3+...+2013)

=2014*(1+(1/1+2)+(1/1+2+3)+...+( 1/1+2+3+...+2013))

=2014*(1+(1/3)+(1/6)+....+(1/2027091)

=2014*2*((1/+(1/2*3)+(1/3*4).....+(1/2013*2014))

=2014*2*(1/1-1/2+1/2-1/3+1/3-1/4+.....+1/2013-1/2014)

=2014*2*(1-1/2014)

=2*(2014*2013/2014)

=2*2013

=4026

Cuối cùng cũng giải được.

14 tháng 2 2020

\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)

\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)

14 tháng 2 2020

\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)

\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)

a: Số số hạng là 2014-1+1=2014 số

A=2014*2015/2=2029105

b: Số số hạng là (2013-1):2+1=1007(số)

B=(2013+1)*1007/2=1014049

c: Số số hạng là (2014-2):2+1=1007(số)

Tổng là (2014+2)*1007/2=1015056

d: Số số hạng là (2014-1):3+1=672(số)

Tổng là (2014+1)*672/2=677040

e: Số số hạng là (2015-5):5+1=403(số)

Tổng là (2015+5)*403/2=407030