Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.3+3.5+5.7+...+99.101
6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)
= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101
=1.3+99.101.103
=> A= \(\frac{1.3+99.101.103}{6}\)
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)/3
1+2+3+...+n=n(n+1)/2
Áp dụng vào bài toán ta được :
S=100.101.102/3 +100.101/2
= 343400 + 5050
= 348450
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng vào bài toán ta được :
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)
= 343400 + 5050
= 348450
a. Ta có: \(A=1\cdot3+3\cdot5+5\cdot7+...+99\cdot101\)
\(\Rightarrow A=1\left(1+2\right)+3\cdot\left(3+2\right)+...+99\left(99+2\right)\)
\(\Rightarrow A=\left(1^2+3^2+5^2+...+97^2+99^2\right)+2\left(1+3+5+...+97+99\right)\)
Đặt \(M=1^2+3^2+5^2+99^2\)
\(\Rightarrow M=\left(1^2+2^2+3^2+...+100^2\right)-2^2\left(1^2+2^2+3^2+50^2\right)\)
Tính dãy tổng quát \(N=1^2+2^2+3^2+...+n^2\)
\(\Rightarrow N=1\left(0+1\right)+2\left(1+1\right)+3\left(2+1\right)+...+n[\left(n-1\right)+1]\)
\(\Rightarrow N=\left[1\cdot2+2\cdot3+...+\left(n-1\right)n\right]+\left(1+2+3+...+n\right)\)
\(\Rightarrow N=n\left(n+1\right)\cdot\left[\left(n-1\right):3+1:2\right]=n\left(n+1\right)\cdot\left(2n+1\right):6\)
Áp dụng vào M ta được:
\(M=100\cdot101\cdot201:6-4\cdot50\cdot51\cdot101:6=166650\)
\(\Rightarrow A=166650+2\left(1+99\right)\cdot50:2\)
\(\Rightarrow A=166650+5000=171650\)
Vậy \(A=171650\)
tham khảo
Tại đây