Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko ghi đb nhé
\(=\frac{1\cdot3+1}{1\cdot3}+\frac{2\cdot4+1}{2\cdot4}+...+\frac{99\cdot101+1}{99\cdot101}.\)
\(=1+\frac{1}{1\cdot3}+1+\frac{1}{2\cdot4}+...+1+\frac{1}{99\cdot101}\)
\(=99+\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{2\cdot4}+...+\frac{2}{99\cdot101}\right)\)
\(=99+\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{100}+\frac{1}{99}-\frac{1}{101}\right)\)
\(=99+\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
phần còn lại bn tự tính nha
1)\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
2)\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\times\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
tự làm tiếp nhé
1.= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
= \(1-\frac{1}{101}\) = \(\frac{100}{101}\)
2.= \(2\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
= \(2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
= \(2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\) = \(2\cdot\frac{502}{1005}\) = \(\frac{1004}{1005}\)
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh
A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=1-\(\frac{1}{101}\)
=\(\frac{100}{101}\)
B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)
=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))
=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)
Chúc bạn học tốt
*\(\frac{x}{200}\)=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\)....\(\frac{99^2}{99.100}\)
=>\(\frac{x}{200}\)=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{99}{100}\)
=>\(\frac{x}{200}\)=\(\frac{1}{100}\)
=>100x=200
=>x=2
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)
\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+...+\frac{100^2}{99.101}\\ =\frac{2.2}{1.3}+\frac{3.3}{2.4}+...+\frac{100.100}{99.101}\\ =\frac{2.}{1.}\frac{3.}{2.}\frac{...}{...}\frac{100}{99}+\frac{2.}{3.}\frac{3.}{4.}\frac{...}{...}\frac{100}{101}\\ =\frac{100}{1}+\frac{2}{101}\\ =\frac{10100}{101}+\frac{2}{101}\\ =\frac{10102}{101}\)
\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{100^2}{99.101}\)
\(=\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+...+\frac{100.100}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)
\(=100.\frac{2}{101}\)
\(=\frac{200}{101}\)