Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
4/3=1,333...
2015/2=1007,5
2/15=0,1333...
1023 /1024=0,9990234375
4056194 / 402999=10,06502249
1/8=0,125
sắp xếp từ bé đến lớn là:1/8;2/15;1023/1024;4/3;4056194 / 402999;2015/2
sắp xếp từ lớn đến bé là:2015/2;4056194 / 402999;4/3;1023/1024;2/15;1/8
\(1\dfrac{4}{5}+2\dfrac{5}{7}+3\dfrac{4}{5}+4\dfrac{5}{7}\)
\(\text{=}\left(1\dfrac{4}{5}+3\dfrac{4}{5}\right)+\left(2\dfrac{5}{7}+4\dfrac{5}{7}\right)\)
\(\text{=}1+3+\left(\dfrac{4}{5}+\dfrac{4}{5}\right)+2+4+\left(\dfrac{5}{7}+\dfrac{5}{7}\right)\)
\(\text{=}10+\dfrac{8}{5}+\dfrac{10}{7}\text{=}131\dfrac{1}{35}\)
a, 23/4 : 3 + 9/4 x 1/3 - 3/8
= 7,8 + 12,22 - 3,8
= 20,02 - 3,8
=16,22
b, 3/5 : 5/6 : 6/7 : 7/8 + 2/5 +23/35
=3/5 x 6/5 x 7/6 x 8/7 + 2/5 + 23/35
=24/25 + 2/5 + 23/35
=1/5 x(24/5 + 2 +23/7)
=1/5 x 353/35
=353/175
A = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 99 x 100
A = 2 + 6 + 12 + 20 + ... 9900
A = [2+9900] rồi bn nhân tổng số từ số 2 - 9900
\(3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\frac{99.100.101}{3}\)
\(1\)\(\frac{1}{3}x1\)\(\frac{1}{4}x1\)\(\frac{1}{5}x...x1\)\(\frac{1}{8}\)
\(=\frac{4}{3}x\)\(\frac{5}{4}x\)\(\frac{6}{5}\)\(x...x\)\(\frac{9}{8}\)
Tự tính nốt
\(1\frac{1}{3}\times1\frac{1}{4}\times1\frac{1}{5}\times1\frac{1}{6}\times1\frac{1}{7}\times1\frac{1}{8}.\)
= \(\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times\frac{9}{8}\times\frac{10}{9}\)
= \(\frac{4\times5\times6\times7\times8\times9\times10}{3\times4\times5\times6\times7\times8\times9}\)
= \(\frac{10}{3}\)
a; 5\(\dfrac{3}{4}\) : 3 + 2\(\dfrac{1}{4}\).\(\dfrac{1}{3}\) - \(\dfrac{3}{8}\)
= \(\dfrac{23}{4}\) : 3 + \(\dfrac{9}{4}\).\(\dfrac{1}{3}\) - \(\dfrac{3}{8}\)
= \(\dfrac{23}{4}\) x \(\dfrac{1}{3}\) + \(\dfrac{3}{4}\) - \(\dfrac{3}{8}\)
= \(\dfrac{23}{12}\) + \(\dfrac{3}{4}\) - \(\dfrac{3}{8}\)
= \(\dfrac{46}{24}\) + \(\dfrac{18}{24}\) - \(\dfrac{9}{24}\)
= \(\dfrac{64}{24}\) - \(\dfrac{9}{24}\)
= \(\dfrac{55}{24}\)
Đặt \(A=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+.......+\frac{1023}{1024}\)
\(\Rightarrow2A=1+\frac{3}{2}+\frac{7}{4}+......+\frac{1023}{512}\)
\(\Rightarrow2A-A=1+1+1+.......+1-\frac{1023}{1024}\)
\(\Rightarrow A=10-\frac{1023}{1024}=\frac{9217}{1024}\)